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Chapter 1

Introduction

1.1 Basic Terms

Before getting involved in the subject matter in detail, let us define some of the terms used
extensively in the field of statistics.

1.1.1 Datum vs Data

Datum is an observed value representing one or more characteristics of an object. It is also
known as an observation or an item or a case or a unit. For example, if the height of an
individual is 1.72m, then 1.72m is an observation. Similarly, if the height and age of a per-
son are given as 1.65m and 27yrs, respectively, then (1.65m, 27yrs) is also a single observation.

Data is a collection of observed values (observations or cases) of some objects. For example,
given the heights of two individuals as 1.72m and 1.69m. These values can be considered as
data consisting of two observations. In addition, the height and age of two persons given as
(1.65m, 27yrs) and (1.79m, 35yrs) are data.

1.1.2 Population vs Sample

A statistical population consists of all objects under study. Each object, upon which an ob-
servation is recorded, is called a unit of analysis or study unit. The total number of objects
in a population is called population size (mostly denoted by N).

A sample is the subset of a population. The number of objects in a sample is also called
sample size (mostly denoted by n).
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Example 1.1. A study of 300 married women in Addis Ababa city administration showed
that 99% of them have comprehensive knowledge of HIV/AIDS. Here, the population consists
of ”All married women in Addis Ababa city administration” and the sample consists of ”The
300 married women selected from Addis Ababa city administration”. The unit of analysis is
a married woman.

Example 1.2. A study of 250 patients admitted to St. Paul’s Hospital during the past
year revealed that, on the average, the patients lived 150 kms away from the hospital. ”All
patients admitted to St. Paul’s Hospital during the past year” is the population and ”The
250 patients selected from those who admitted to St. Paul’s Hospital during the past year”
is the sample. Now the unit of analysis is a patient.

Example 1.3. Of 58 students who joined a nursing school in a certain time, only 5 failed to
graduate. The population is ”All the 58 students who joined the school” and all are taken
into consideration. Hence, no sample is taken. The unit of analysis is ” a student”.

Example 1.4. Of all printed circuit boards manufactured this month, 5% are defective. The
population consists of ”All circuit boards manufactured this month” and the unit of analysis
is ”a circuit board”.

1.2 Definitions of Statistics

Statistics can be defined in two senses: plural sense (as statistical data) and singular sense
(as statistical methods).

1.2.1 Plural Sense: as Statistical Data

In the plural sense definition, statistics are collection of facts and figures. This meaning of the
word is widely used when a reference is made to facts and figures on a certain characteristic.
For example: malaria statistics, sales statistics, employment statistics, e.t.c. In this sense, the
word statistics serves simply as data. But, not all numerical data are statistics. In order for
the numerical data to be identified as statistics, the data must possess certain characteristics.

The data should be in an aggregate form of facts. Single or isolated fact cannot be called
statistics as this cannot be compared or related to other figures within the same framework.
That is, a single fact, even though numerically expressed, cannot be called statistics. Accord-
ingly, if a new employee says that ”I earn Birr 300000 per year”, it would not be considered

2
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as statistics. On the other hand, if we say that the average salary of a new employee is
Birr 300000 per year, then this would be considered as statistics since the average has been
computed from many related figures such as yearly salaries of many new employees.

In addition, the data must be placed in relation to each other. The phrase, placed in relation to
each other suggests that the facts should be comparable. The comparison of facts and figures
is conducted regarding the same characteristics over a period of time from a single source or
it may be from various sources at any one given time. For example, prices of different items in
a store as such would not be considered statistics. However, prices of one product in different
stores constitute statistical data since these prices are comparable. Also, the changes in the
price of a product in one store over a period of time would also be considered as statistical
data since these changes provide for comparison over a period of time. The general rule is,
the comparisons must relate to the same phenomenon so that likes are compared with likes
and oranges are not compared with apples.

Hence, the term statistics refers to collection of facts. However, statistics involves much more
than numerical facts.

1.2.2 Singular Sense: as Statistical Method

In the singular sense definition, statistics refers to a discipline concerned with the extraction
of relevant information from data with the aim to provide solutions to a problem; make more
informed and better decision-making; and design new products and processes. In this mean-
ing, statistics is concerned with the development and application of methods and techniques
for collecting, organizing, presenting, analyzing data and interpreting the results of the anal-
ysis.

Accordingly, a statistical investigation involves five stages: data collection, data organization,
data presentation, data analysis and interpretation of results.

1. Collection of data: Data collection is the first stage in any statistical investigation.
It involves the process of obtaining (gathering) a set of related measurements or counts
to meet predetermined objectives. The data might be obtained from either primary or
secondary sources, see Section 1.7.2 for details.

2. Organization of data: It is usually not possible to derive any conclusion about the
main features of the data from direct inspection of the observations. The second stage
of a statistical investigation is describing the properties of the data in a summary form
called data organization. Since there may be omissions, inconsistencies, ambiguities,
irrelevant answers and recording errors, the data should be corrected first. Hence, the
first step in the organization of data is editing. Then, once the data is edited, the
second step is classification, that is, the collected data should be arranged according to
some common characteristics. The last step of the organization of data is presenting
the classified data in tabular form, i.e., using rows and columns.

3. Presentation of data: The collected data is usually presented using charts (diagrams)
and graphs. The purpose of data presentation is to have an overview of what the data
actually looks like. Charts and graphs provide visually an intuitive understanding of
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data. They have greater attraction and memorizing effect than figures, and also facilitate
comparison.

4. Analysis of data: The analysis of data is the extraction of a few summarized and
comprehensive numerical values with the goal of discovering useful information. This is
the most important part of a statistical investigation. The analysis may require simple
to sophisticated statistical techniques.

5. Interpretation of results: This is the last stage of a statistical investigation. Once
the data is analyzed, the main job is attaching physical meaning or interpretation to
those numerical results obtained from the analysis. The interpretation must be true
in its meaning and sense. No pre-conceived ideas should be thrusted on the numerical
results obtained out of the analysis. Also, no attempts should be made to draw more
conclusions than the results are actually liable to.

1.3 Classification of Statistics

Based on the scope of the decision, statistics can be classified into two; descriptive and
inferential statistics.

1.3.1 Descriptive Statistics

Descriptive statistics is concerned with organizing and summarizing the most important fea-
tures of the data without going beyond the data itself. That is, descriptive statistics describes
only the data that we have, without attempting to conclude anything that goes beyond the
data. It includes methods of data organization like classification, tabulation and frequency
distributions; methods of data presentation like charts (diagrams) and graphs; and certain
indicators of data like measures of central tendency and measures of variation.

1.3.2 Inferential Statistics

Inferential statistics is concerned with drawing statistically valid conclusions about the char-
acteristics of the population based on the results obtained from the sample. In this form
of statistical analysis, descriptive statistics is linked with probability theory. Performing hy-
pothesis testing, determining relationship (association) between characteristics and making
predictions (forecasting) are also inferential statistics.

Example 1.5. Suppose a researcher is interested to know the average mark of a certain class
in ”Statistics” course. From a class of size 150, s/he took a random sample of 9 students and
gave them an exam out of 100. Then, s/he got the average score 76. The statement ”The
average score of the 9 selected students is 76” is descriptive where as the statement ”The
average score of the class is 76” is inferential.

Example 1.6. We want to compare the average mark of boys and girls. Suppose we took
a random sample of 7 boys of the total 85 boys and 6 girls of the total 60 girls, and gave
them all the same exam. The average score of the 7 boys became 87 and that of the 6 girls
became 92. Now the statements ”The average score of the 7 boys is lower than that of the
6 girls” and ”The 6 selected girls did better than the 7 selected boys” are both descriptive.
But, saying ”Girls did better in the exam than boys” is an inferential statistical statement.
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Exercise 1.1. Classify each of the following statements as descriptive and inferential statis-
tics.

1. The average age of the students in this class is 21 years.

2. There is a strong association between smoking and lung cancer.

3. The price of wheat will be increased by 5% in the coming year.

4. Teaching statistics by computer method is more effective than teaching by lecture
method.

5. Of the students enrolled in St.PHMMC this year, 74% are female and 26% are male.

6. The chance of winning the Ethiopian National Lottery in any day is 1 out of 167000.

1.4 Applications, Uses and Limitations of Statistics

1.4.1 Applications of Statistics

There is almost no walk of life that has not been affected by statistics - ranging from a sim-
ple household to big business and the government. Statistics plays a very important role in
a wide range of fields; natural, social and physical sciences. There is hardly any scientific
research going on without the use of statistics in one form or another. Following are just a
few examples illustrating the use of statistical inference in different situations.

The effectiveness of a new drug is determined by statistical experimentation and evaluation
in medical and pharmaceutical research. Utilizing inferential statistics, researchers can de-
sign experiments with small randomly selected sample of patients and the results of tests of
the drug may be used about the entire population of patients who may use the drug if it is
introduced.

In botany, statistics is used in evaluating the effects of temperature and other climatic con-
ditions and types of soil on the health of plants.

In agriculture, experiments about crop yields, types of fertilizers and types of soils under dif-
ferent types of environments are commonly designed and analyzed through statistical methods
and concepts.

In economics, statistics is used for modeling functional relationships between different char-
acteristics.

In marketing research, statistical tools are indispensable in studying consumer behavior, ef-
fects of various promotional strategies and so on. For instance, market researchers are often
interested in the relationship between advertising and sales. A data set of randomly chosen
sales and advertising figures for a given firm may be of some interest in itself, but the in-
formation in it is much more useful if it leads to implications about the underlying process
- the relationship between the firm’s level of advertising and the resulting level of sales. An
understanding of the true relationship between advertising and sales - the relationship in the
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population of advertising and sales possibilities for the firm - would allow us to predict sales
for any level of advertising and thus to set advertising at a level that maximizes profits.

In education, statistical methods are used to study the effects of certain training.

In a public health study, epidemiologists want to know whether smoking is linked to a par-
ticular demographic class individuals.

In quality control, statistical methods help to check whether a product satisfies a given stan-
dard. A quality control engineer at a plant making disk drives for computers needs to make
sure that no more than 3% of the drives produced are defective. The engineer may routinely
collect random samples of drives and check their quality. Based on the random samples, the
engineer may then draw a conclusion about the proportion of defective items in the entire
population of drives.

In physical sciences, the science of meteorology uses statistics for analyzing the data gathered
by satellites and for forecasting weather conditions.

Statistics helps to enhance the power of decision making in the face of uncertainty. For in-
stance, it is immensely useful for politicians to determine their chances of winning and study
the attitudes of their people on their policies.

Statistics is also used in other areas like insurance companies, banks, public utility companies
and so on. A bank may be interested in assessing the popularity of a particular model of
automatic teller machines. The machines may be tried on a randomly chosen group of bank
customers. The conclusions of the study could then be generalized by statistical inference to
the entire population of the bank’s customers.

1.4.2 Uses of Statistics

• Reduction and summarization of data: It is generally not possible to draw any
conclusions from the raw data that is voluminous and in haphazard manner. Statistics
condenses and summarizes a large mass of data, and presents facts into a few presentable
and understandable numerical figures.

• Facilitating comparison of data: Arrangement of data with respect to different
characteristics facilitates comparison. Statistical devises such as averages, percentages,
ratios, e.t.c. are used for this purpose.

• Test of the validity of important conjectures: For instance, hypothesis like
whether a new medicine is effective in curing a disease can be tested using statisti-
cal tools.

• Determining the relationship (association) between characteristics: Statistical
techniques assist in determining the degree of relationship and establishing cause-and-
effect relationship between two or more characteristics.

• Prediction and forecasting future behaviour: Statistical methods are highly useful
tools in analyzing past data and forecasting future trends,e.g., forecasting the number
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of new HIV/AIDS cases in the coming year or determining the probability of occurrence
of an outbreak in a certain area in the coming five years.

1.4.3 Limitations of Statistics

• Statistics does not deal with a single observation, rather, as discussed earlier, it only
deals with aggregate of facts. For example, the mark obtained by one student in a class
does not carry any meaning in itself, unless it is compared with a set standard or with
other students in the same class or with his own marks obtained earlier.

• Statistical results are true on average; i.e. for the majority of cases. In other words,
statistics is not an exact science and hence, statistical conclusions are not universally
true. That is, statistical laws are not universally true unlike the laws of mathematics,
chemistry or physics.

• Statistical methods are liable to be misused or misinterpreted. Statistical interpretation
requires a high degree of skill and understanding of the subject. Often, misuse of
statistics happens due to lack of knowledge.

1.5 Biostatistics

Biostatistics is the application of statistical methods to public health and biomedical sciences.
As technology progresses, public health and medicine are becoming increasingly quantitative
rather than descriptive information. Therefore, much of current medical research are becom-
ing reliant on statistical methodologies.

Biostatistics covers applications and contributions not only from health, medicines and, nu-
trition but also from fields such as genetics, biology, epidemiology, and many others.

1.6 Variables

A variable is a characteristic or an attribute that can assume different values. For example:
height, family size, gender, marital status, · · · .

1.6.1 Types of Variables: Quantitative vs Qualitative

Based on the values that variables assume, variables can be classified into two as quantitative
and qualitative (categorical).

• Quantitative variables: Quantitative variables are those variables which assume nu-
meric values. These variables are numeric in nature. Height and family size are examples
of quantitative variables.

Quantitative variables are again further classified into two; discrete and continuous
variables.
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– Discrete variables: Discrete variables are those variables that assume a countable
number of distinct and recognizable whole number values. Family size, number of
children in a family, number of cars at a traffic light, mother’s history of number of
births (parity) and pregnancies (gravidity), · · · are some examples of discrete vari-
ables. Such variables can assume a finite number of possible values or a countably
infinite number of values. The values of these variables are obtained by counting
(0, 1, 2, · · · ).

– Continuous variables: Continuous variables can take any value including deci-
mals. One is not restricted, in principle, to particular values such as the integers of
the discrete scale. The restricting factor is the degree of accuracy of the measuring
instrument. These variables theoretically assume an infinite number of possible
values. Their values are obtained by measuring. Examples of continuous variables
are height, weight, time, temperature, · · ·

• Qualitative variables: Qualitative variables are, on the other hand, those variables
that assume non-numeric values called categories or levels or groups. For example,
gender is a qualitative variable with two categories (levels): male and female. Marital
status is also qualitative with, say, four categories: single, married, divorced, other.
Numerical codes might be used for facilitating data collection, entry and analysis. But,
the varaible is qualitative even though the values appear as numeric.

Based on the number of values that qualitative variables assume, they can be classified
as binary (dichotomous) and multinomial (polytomous).

– Binary variables: Binary variables often consist of ’either-or’ type responses.
That is, these variables have only two categories (levels). For example, gender
(female, male), patient status (cured, not cured), pregnancy status (pregnant, not
pregnant), exam result of a student (pass, fail), smoking status (smoker, non-
smoker) are binary variables.

– Multinomial variables: Multinomial variables are those qualitative variables
with three or more categories. For example, blood type (A, B, AB, O), marital
status (single, married, divorced, other), religion (orthodox, muslim, protestant,
· · · ), color (blue, red, green, black, · · · ) are multinomial variables.

Example 1.7. Classify each of the following variable as qualitative or quantitative and if it
is quantitative classify as discrete or continuous.

1. Color of automobiles in a dealer’s show room

2. Age of patients seen in a dental clinic

3. Number of seats in a movie theater

4. Blood pressure of a patient

5. The distance between a hospital to a house

6. Classification of patients based on nursing care needed (complete, partial, safers)

7. Temperature in a class room
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8. Number of tomatoes on each plant on a field

9. Weight of newly born babies in a hospital during a year

10. Number of heart attacks

11. Temperature (very cold, cold, hot, very hot)

12. Heart rate

13. Cholesterol level

14. A woman may never have conceived, conceived but spontaneously aborted, or given
birth to a live infant.

15. Diastolic blood pressure (hypertension > 90 mmHg, normotension ≤ 90 mmHg)

1.6.2 Measurement Scales: Nominal, Ordinal, Interval and Ratio

Before explaining what measurement scales are, first, let us consider the following two cases:

Case 1:

• Mr A wears 5 when he plays foot ball.

• Mr B wears 6 when he plays foot ball.

Who plays better? What is the average t-shirt number?

Case 2:

• Mr A scored 5 in Stat quiz.

• Mr B scored 6 in Stat quiz.

Who did better? What is the average score?

Based on the number on the t-shirts, it is not possible to judge whether Mr B plays better.
But, by using the test score, it is possible to judge that Mr B did better in the exam. Also
it not possible to find the average t-shirt numbers because the numbers on the t-shirts are
simply codes but it is possible to obtain the average test score.

Therefore, a scale of measurement shows the amount of information contained in the value
of a variable, and what mathematical operations and statistical analysis are permissible to be
done on the values of the variable. There are four levels of measurement. These levels, from
the weakest to the strongest, in order are: nominal, ordinal, interval and ratio.

1. Nominal variables: Nominal variables are qualitative variables which show classi-
fication of individuals into mutually exclusive (non-overlapping) and exhaustive cate-
gories without any associated ranking. For example; gender, religion, ethnicity, eye
color (black, brown, etc), · · · are nominal variables. Numbers may be assigned to the
categories of these variables for coding purposes. But, it is not possible to compare
individuals based on the numbers assigned to the categories. The only mathematical
operation permissible to be done on the values of these variables is counting. Mobile
number and patient’s card number are also examples of nominal variables.
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2. Ordinal variables: Ordinal variables are also qualitative variables whose values can be
ordered and ranked. However, the ranks only indicate as to which category greater or
better but there is no precise difference between the categories of the variable. Example:
grade scores (A, B, C, D, F), academic qualifications (B.Sc., M.Sc., Ph.D.), strength
(very weak, week, strong, very strong), health status (very sick, sick, cured), strength
of opinions in likert scales (strongly agree, agree, neutral, disagree, strongly disagree),
stages of breast cancer (I, II, III, IV).

3. Interval variables: Interval variables are quantitative variables and identify not only
as to which category is greater or better but also by how much. The distances represented
by the differences between consecutive values are equal; that is, interval variables have
equal intervals. An interval scale is the stronger form of measurement but, there is no
true zero. That is, the zero point is a matter of convention or convenience and not a
natural or fixed zero point. Zero indicates low than empty. That is, zero does not show
absence of a phenomenon. For example, a temperature of 0 ◦C does not mean there is
no temperature but, rather, it is too cold. Similarly, if a student scores 0 in a certain
course, it does not mean the student has no knowledge in the course at all.

4. Ratio variables: Ratio variables are quantitative variables in which the ratio of two
values are meaningful. These scales are the highest form of measurements. Unlike
interval variables, zero for ratio variables indicates that absence of the characteristic
being studied. Hence, there is a true (absolute) zero, and the ratio of two values is
meaningful. All mathematical operations are allowed to be operated on the values of
these variables. Examples: height, weight, heart rate, · · · .

Summary: All qualitative variables are either nominal or ordinal scales. And all quantitative
variables are either interval or ratio scales. Most statistical analyses do not distinguish interval
and ratio scale variables. As a result, in most practical aspects, they are grouped under metric
(scale) variables.

Exercise 1.2. Identify the scale of measurement of the following variables.

1. The response after treatment of a patient (improved, the same or worse).

2. Women’s choice of contraceptive methods.

3. Body Mass Index of HIV/AIDS patients.

4. Patient satisfaction by medical service in a scale of 0 to 4.
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5. Length of stay in a hospital for medical treatment.

6. Type of unit stayed most when admitted in a hospital (coronary care, intensive care,
maternity care, medical unit, pediatric unit, surgical unit).

7. Comfortability of a hospital’s location (very comfortable, comfortable, somewhat com-
fortable, not at all comfortable).

8. Condition of a patient when admitted in a hospital (critical, serious, moderate, minor).

9. Skill of a doctor (excellent, very good, good, fair, poor).

If a characteristic has only one value in a particular study, it is not a variable; it is a constant.
Thus, marital status is not a variable if all participants are married. Similarly, gender is not
a variable if all participants in a study are female.

1.6.3 Role of Variables: Dependent vs Independent

Based on the role of variables in a statistical analysis, variables can be classified as dependent
and independent variables.

• A dependent variable is a variable, that is, of primary interest to be determined as an
outcome. For example, the outcome of a certain treatment or the educational achieve-
ment level can be considered dependent variables. The terms outcome, response and
dependent are used interchangeably.

• An independent variable is a variable to be used to determine the value of the dependent
variable. It is also called a factor, an exposure, a predictor or a covariate.

There are two types of independent variables: attribute (measured) and active (manip-
ulated) variables.

– An attribute independent variable is a variable whose values are preexisting char-
acteristics of objects under study. The values of such a variable cannot be sys-
tematically changed or manipulated. For example, education, sex, socio-economic
status, · · · .

– An active independent variable can be experimentally manipulated. Such an in-
dependent variable is a necessary (but not sufficient) condition to make cause-
and-effect conclusions. For example, a researcher might investigate a new kind of
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therapy compared to the traditional treatment (the treatment group each person is
assigned to). A second example could be a design to evaluate the effect of different
fertilizers on crop yields. A third example might be to study the effect of a new
teaching method, such as cooperative learning, on student performance. Studies
with active independent variables are experimental studies.

Even though a statistical analysis does not differentiate whether an independent variable
is an attribute or active, there is a crucial difference in interpretation. For scientific
researches in applied disciplines, the need to demonstrate that a given intervention or
treatment causes change in behaviour or performance is extremely important. Only the
approaches that have an active independent variable can allow one to infer that the
change (difference) in the independent variable caused the change (difference) in the
dependent variable. In contrast, a significant difference between or among persons with
different values of an attribute independent variable should not lead one to conclude
that the attribute independent variable caused the dependent variable to change.

Based on the type and role of variables, the common statistical methods are listed in the
following table.

Dependent Variable Independent Variable Method

Continuous Binary t test
Continuous Multinomial ANOVA
Continuous Continuous Correlation
Continuous Quantitative/Categorical/Both Linear Regression
Categorical Categorical χ2 test
Binary Quantitative/Categorical/Both Binary Logistic Regression
Multinomial Quantitative/Categorical/Both Multinomial Logistic Regression
Ordinal Quantitative/Categorical/Both Ordinal Logistic Regression
Discrete Quantitative/Categorical/Both Poisson Regression
Time-to-event Quantitative/Categorical/Both Survival Models

Note: For correlation and χ2 test, there is no need to differentiate variables as dependent
and independent.

Exercise 1.3. For each of the following objectives of a study, identify the dependent and
independent variables, and the most appropriate model.

1. The effect of gender on blood pressure.

2. The effect of age on hypertension.

3. The effect of gender on hypertension.

4. Comparing the number of sexual partners between urban and rural resident women.

5. Investigating the effectiveness of a new therapy compared to the traditional treatment.

6. Evaluating the effect of different fertilizers on crop yields.

7. Comparing the blood pressure of male and female individuals.
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8. Studying the effect of a new teaching method, such as cooperative learning, on student
performance.

9. The effect of age (classified as 18− 24, 25− 34 and ≥ 35 years) on hypertension.

1.7 Types and Sources of Data

Data is presented in a rectangular form. All the values of a particular variable is organized to
a column. Observation, i.e., measurements collected from a subject forms a row in a dataset.

1.7.1 Types of Data

Based on the role of time, data can be classified as cross-sectional, time series and longitudinal.

1. Cross-sectional data: Cross-sectional data consists of a set of observations taken from
different subjects at a single point in time.

Student Gender Age (in years) GPA

1 Male 23 3.84
2 Female 27 4.00
3 Male 26 2.18
4 Female 25 3.25
5 Female 21 3.57
6 Male 24 3.01
7 Female 25 2.75

2. Time-series data: is a set of observations collected from a single subject at different
times usually at equal intervals, such as daily, weekly, monthly, quarterly, annually, etc.

Year 2007 2008 2009 2010 2011

Number of RTA 5214 4845 8174 1052 9784

3. Longitudinal data: It is usually called as cross-sectional time-series data as it involves
a collection of observations from different subjects at multiple instances.

StudentID Female Semester GPA

251 0 1 3.51
251 0 2 3.25
251 0 3 3.63
251 0 4 3.70
251 0 5 3.65
251 0 6 3.20
257 1 1 3.67
257 1 2 3.90
257 1 3 3.78
257 1 4 3.50
257 1 5 3.82
257 1 6 3.90

Case-control (retrospective) and cohort (prospective) studies use longitudinal data.
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1.7.2 Sources of Data

Depending upon the sources, a statistical data can be classified into two categories: primary
and secondary.

1. Primary data: Primary data is the data collected, under the direct supervision and
instruction of the researcher, either through direct personal observation or by enquiring
individuals. The personal observation ranges from simple visual observations to those
requiring special skills like clinical and microbiological examinations using radiographic,
biochemical, X-ray machines, microscope, · · · . And for obtaining data by enquiring
individuals, a specially designed form called questionnaire1 will be prepared prior to
the actual data collection.

2. Secondary data: When an investigator uses data which has already been collected by
others, the data is called secondary data. Such data could be obtained from different
organizations like health institutions (health centers, hospitals), research organizations,
Central Statistical Agency, Ministry of Health and other ministerial offices. This data
is primary for the agency that collected it and becomes secondary for someone else who
uses this data for his/her own purposes.

Before using secondary data for analysis, the data should be checked for whether it is suitable,
adequate and reliable for the purpose of investigation. Whether the data are suitable can be
judged in the light of the nature and scope of investigation. Whether the data are adequate
can be judged in the light of the time and geographical area covered. Whether the data are
reliable is checking for its accuracy, for example, whether the sample is a proper representative
of the population.

1.8 Methods of Data Collection

The first and foremost task in statistical investigation is data collection. In fact, prior to
the actual data collection, there are four important points to be considered. These are the
purpose of data collection (why we need to collect data), the type of variables to be considered
(what are the variables of interest), the source of data (from where we can get the data) and
the methods of data collection (how we can collect the data).

Once these questions are answered, it becomes necessary to collect the data needed. There are
two broad ways of collecting data. The first is experimentation, i.e., an actual experiment is
conducted and then observations (measurements and counts) are recorded. Such experimen-
tal studies are common in natural sciences; agriculture, biology, medical science, industry, · · · .

The other way of collecting data is by enquiring certain individuals, directly or indirectly.
Such a technique is known as survey which is commonly used in social sciences, i.e., problems
related to sociology, psychology and various economic studies.

For a survey, there are two common methods of data collection: face-to-face interview and
self-administered questionnaire.

1see Section 1.8
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1. Face-to-face interview: A trained interviewer (commonly called enumerator) asks
a series of questions to the interviewee (commonly called respondent) and records re-
sponses on a specially designed form called questionnaire. In this approach, the quality
of the data is affected both by the design of the questionnaire and the quality of the
interviewer. This method of data collection has the advantage of obtaining correct in-
formation, since the enumerator can make some clarifications to the questions which
are not clear for the respondent, and avoids incomplete responses.

On the other hand, face-to-face interview is costly since it requires training of interview-
ers and other costs. In addition, the respondent may not tell us the real information for
sensitive questions, since there is face-to-face interaction. For example, if the respon-
dent’s salary is small, then s/he may get ashamed of it and might not tell the correct
one.

2. Self-administered questionnaire: The researcher distributes a copy of a single ques-
tionnaire to the respondents; the respondents complete the questionnaire and give back
to the researcher.

As compared to face-to-face interview, costs are low. Also, the responses are free from
biases of the interviewer. On the other hand, the respondent might give inappropriate
answers to questions, since there is no one with them, they may understand the question
wrongly and respond it incorrectly. This method is not applicable for uneducated
respondents. There is also a high degree of non- or partial-response, and low return
rates.

Designing Questionnaire

In most survey methods of data collection, it is necessary to prepare a document, called ques-
tionnaire, which contains a set of questions to be answered by the respondents and used to
record the responses. In addition to the set of related questions, a questionnaire should have
also a cover letter.

The cover letter should introduce the person conducting the survey (researcher), state the
objective(s) of the survey, put a promise of the anonymity (confidentiality), estimated time
to complete the questionnaire, a consent information whether the respondent is willing to
participate, and also include general instructions how to fill the questionnaire.

In designing a questionnaire, first, the contents (topics) needed to meet the objectives of the
study should be described. Next, the set of questions under each content should be formu-
lated. Lastly, the layout of the questionnaire should be formatted appropriately.

In preparing questions for a questionnaire, the following points should be kept in mind:

• The number of questions should be as few as possible. Once the objectives of the survey
are clearly defined only questions pertinent to the objectives should be included. That
is, all questions in a questionnaire must have a relevance to the objectives of the survey.
If a lengthy questionnaire is unavoidable, it should preferably be divided into two or
more parts depending on the contents.
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• Questions should be simple, short and easy to understand and each questionnaire should
convey one and only one idea. Technical terms should be avoided.

• Questions should be capable of objective answers and the answers should not require
any calculation.

• Sensitive questions (questions of personal and financial nature) should be avoided if
possible. Otherwise, such questions should be asked indirectly, by constructing a set of
ranges, say, age in years (≤17, 18-24, 25-34, 35-64, ≥65), salary in Birr (≤1000, 1001-
2000, 2001-3000, 3001-4000, ≥4001). For non-numeric sensitive questions like diseases
with stigma should be posed as late as possible in the questionnaire.

• Leading questions, question that prompts the answer wanted, should be completely
avoided. The fashion in which a question is asked may result in a response that may be
biased in the direction in which the question is slanted. If we ask a person like ”You do
not smoke cigarette?” the person will automatically say ’Yes I do not smoke’.

• Questions should be logically arranged under the appropriate sequence of topics so
that a natural and spontaneous reply is introduced. Topics should not be mixed up
and questions should not skip back and forth. For example, it is undesirable to ask a
person how many children s/he has before asking whether s/he is married or not. In
general, questions related to background (identification and description of respondents
like age, religion, education, marital status, occupation, · · · ) variables should be come
first, followed by major information questions. If opinions are needed, such questions
should usually be placed at the end of the list.
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Chapter 2

Methods of Data Presentation

2.1 Tabulation of Data

A table is a systematic arrangement of data in rows and columns, which simplifies complex
data and facilitates comparison. Tabulation should not be confused with classification, as the
two differ in many ways. Classification is the separation of items according to similar char-
acteristics and grouping them into various groups. The classification may be geographically
(according to location differences): places, areas or regions; chronologically (according to the
time period): weekly, monthly, quarterly, annually, · · · ; according to qualitative characteris-
tics such as religion, sex, marital status, · · · ; or quantitative characteristics such as weight,
height, income, · · · . Mainly the purpose of classification is to divide the data into homoge-
nous groups whereas the data are presented into rows and columns in tabulation. Hence,
classification is a preliminary step prior to tabulation.

A table, in general, should have the following parts.

1. Table Number: Every table should be identified by a number. It facilitates easy
referencing and identification. The number should be written in the center at the top
of the table. Whenever referring to the table in the text, only the number of the table
can be given.

2. Title: There should be a title at the top, which describes the content of the table.
The title should be clear, concise and brief. The title should be also self-explanatory,
meaning it should answer the questions: What kind of data? When the data is collected
and from where it is collected?

3. Caption: Caption is a brief and self-explanatory heading for each column given the
unit of measurement in parentheses.

4. Stub: Stub is a brief and self-explanatory heading for each row given the unit of
measurement in parentheses.

5. Body: The body of the table is the most important part. The information given in the
rows and columns forms the body of the table. It contains the quantitative information
to be presented in different cells. This arrangement of data remains according to the
description of captions and stubs. If the quantity is zero, it should be entered as zero.
Leaving blank space or putting dash in place of zero is confusing and undesirable.
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6. Footnote: If any value in the table has to be specified for a particular purpose, it should
be marked with an asterisk or another symbol. The specification of the marked value
should be explained at the beneath of the table with the same mark as a ’footnote’.
This is a qualifying statement which is to be written below the table explaining certain
points related to the data which have not been covered in title, caption, and stubs.

7. Source Note: If the data is collected from secondary sources, a source note is given to
disclose the sources from which the data is obtained at the end of the table. Reference
of the source must be complete so that if the potential reader wants to consult the
original source they may do so.

2.2 Frequency Distribution

The most convenient way of organizing data is constructing a frequency distribution. Fre-
quency distribution is the organization of raw data in table form, using classes and frequencies.
The term class stands for a description of a group of similar objects in a dataset and frequency
is the number of times a variable value (category) is repeated.

There are three types of frequency distributions; categorical, discrete (ungrouped) and grouped
(continuous) frequency distributions.

2.2.1 Categorical Frequency Distribution

Categorical frequency distribution is used when the variable is qualitative, i.e., either nominal
or ordinal. Each category of the variable represents a single class and the number of times
each category repeats represents the frequency of that class.

Example 2.1. The blood type of a sample of 25 students is: A B B AB O AB O O B B B
A B B AB O A O AB A O O O AB O. Construct categorical frequency distribution.

Solution: The variable of interest is blood type. This variable has four categories; A, B, AB
and O. As a result, the frequency distribution will have four classes.

Class (Blood type) Frequency (Number of students)

A 4
B 7
AB 5
O 9

Total n = 25

This frequency distribution shows the actual number of observation (frequency) of each class
and it is called absolute frequency distribution. However, an absolute frequency (count) is
rarely useful.

Consider a study of a sample of 150 patients (99 female and 51 male) in which 49 female
and 25 male are depressed. Then, it seems that more female patients are depressed than
male patients. However, it turns out that there are simply more females in the study sample
than males. It is only when this count is expressed as a proportion that it becomes useful.
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Looking at the proportion of female patients who are depressed compared to the proportion
of male patients who are depressed, it is found the proportions are almost equal (49

99 = 0.495
and 25

51 = 0.490) and so females are not more likely to be depressed than males. Hence, in
constructing a frequency distribution, it is essential to express the counts (the number of
observations) in each class as proportions of the total sample size.

Note: Proportion is a special case of a ratio.

• A ratio is simply one number divided by another. Given the weight of a person (in kg)
and the height (in metres), then the ratio of weight to height2 is the Body Mass Index
(BMI).

• Proportion is a ratio of counts where the numerator is a subset of the denominator.
Of 40 patients, if 10 are cured, then the proportion is 10

40 = 0.25 (1:3) which indicates
25% of the patients are cured. {A population proportion is denoted by π while a sample
proportion is denoted by p.} A proportion is known as a risk if the numerator counts bad
events. Hence, if 300 students started nursing school and finally 15 failed to graduate,
the risk of failing is 15

300 = 0.05 = 5%.

• When a time period is involved in the denominator, then a proportion is known as a
rate. If 500 persons die in one month, out of a population of 50000, the death rate is

500
50000 = 0.01 deaths per person per month. {A population rate is denoted by λ while a
sample rate is denoted by r.}

Relative Frequency Distribution

A relative frequency distribution displays the proportion of observations in each group. The
relative frequency is fi

n where fi is frequency of the ith class and n is the total number of
observations. It can be converted into a percentage frequency distribution by multiplying the
relative frequency by 100.

Considering example 2.1, the proportion and percentages frequencies are presented in the
following frequency distribution.

Blood type Number of students Proportion Percentage

A 4 0.16 16
B 7 0.28 28
AB 5 0.20 20
O 9 0.36 36

Total 25 1.00 100

The table shows, of the total number of 25 students, 4 (16%) of the students have blood type
A, 7 (28%) of the students have blood type B, 5 (20%) of the students have blood type AB
and the remaining 9 (36%) of students have blood type O.
Notes:

• The relative (percentage) frequencies are particularly helpful when comparing two or
more distributions in which the number of observations are quite different. The per-
centage distributions make such a comparison more meaningful, since the total number
in the sample or population under consideration becomes irrelevant.
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• Consideration of the relative or percentage frequency is preparatory to the study of
probability theory in Chapter 5. Indeed, if the students in the above table were selected
randomly from, say, a certain school, the probability of selecting a student whose blood
type is A would be 0.16 (16%), the probability of selecting a student whose blood type
is B would be 0.28 (28%), the probability of selecting a student whose blood type is AB
would be 0.20 (20%), and the probability of selecting a student whose blood type is O
would be 0.36 (36%).

Example 2.2. Patients entering ICU in a given hospital may be classified as medical, surgical,
cardiac and other ICT types. Thus, the distribution of 25 patients in the different ICUs can
be presented as follows.

ICU Type Frequency Relative Frequency

Medical 12 0.48
Surgical 6 0.24
Cardiac 5 0.20
Other 2 0.08

Total 25 1.00

Exercise 2.1. Construct an absolute and a percentage frequency distributions for the fol-
lowing letter grades of 32 students in statistics course: A B C C C C B B A D A C C A B F
C C A B A B C C C A D A C C A B.

2.2.2 Discrete Frequency Distribution

A frequency distribution is also used to summarize and present quantitative data. If the
variable of interest is discrete that can take only a few unique values, then the frequency
distribution can be constructed in the same way as that of for a qualitative variable. Such a
frequency table is called discrete (ungrouped) frequency distribution. In a discrete frequency
distribution, each numerical value of the quantitative variable represents a single class and
the counts of each value represents the frequency of that class.

Example 2.3. The number of children for a sample of 21 families is given as: 2 3 5 4 3 3 2
3 1 0 4 3 2 2 1 1 1 4 2 2 2. Construct discrete frequency distribution.

Solution: The variable of interest here is number of children with 6 unique values; 0, 1, 2,
3, 4 and 5.

Class (No. of children) Frequency (No. of families) Percentage (%)

0 1 4.76
1 4 19.04
2 7 33.33
3 5 23.81
4 3 14.29
5 1 4.76

Total 21 100

Only 1 (4.76%) family has no child, 4 (19.04%) of the families have only 1 child, 7 (33.33%)
of the families have 2 children, 5 (23.81%) of the families have 3 children, 3 (14.29%) of the
families have 4 children and the remaining 5 (23.81%) of the families have 5 children.

20

mailto:es.awol@gmail.com


Bio/Statistics- SPHM 5011 c© 2021 By: Awol S., E-mail: es.awol@gmail.com

Exercise 2.2. Suppose that a sample of 16 children from a primary school are taken and get
the following data about the number of their decayed teeth as 3, 4, 2, 4, 0, 1, 3, 0, 2, 3, 2, 3,
3, 2, 4, 1. Construct a frequency distribution.

Cross-tabulation

In addition to tabulating each variable separately (one-way table), there may be an interest
to cross-classify individuals based on two variables. Each of the two variables can be either
qualitative or discrete assuming a few unique values. Such a classification using two variables
is called a two-way (contingency) table. The primary value of a cross-tabulation lies in the
insight it offers about the association between the variables.

Recall the example in which 49 female and 25 male patients are depressed of 150 (99 female
and 51 male) patients. Here, there are two variables of interest; gender and depression. Each
variable has two categories. Therefore, the data can be summarized in a 2 × 2 contingency
table as follows.

Gender
Depression

Total
Depressed Not Depressed

Male 25 26 51
Female 49 50 99

Total 74 76 150

This table shows, of the total 150 patients, 25 patients are male and depressed, 49 patients
are female and depressed, 26 patients are male and not depressed, and 50 patients are female
and not depressed.

The frequency distributions constructed from the margins of a cross-tabulation provide in-
formation about each of the variables individually, but these do not shed any light on the
relationship between the variables. Converting the frequencies in a cross-tabulation into row
percentages or column percentages can provide more insight into the relationship between the
two variables.

Exercise 2.3. The age in years and hypertension test results of a sample of 9 women in the
reproductive age, 15-49, is given in the following table:

Age 15− 24 25− 34 35− 49 35− 49 25− 34 15− 24 35− 49 35− 49 25− 34

Hyp +ve -ve +ve +ve +ve -ve +ve -ve +ve

Summarize the data using a contingency table.

2.2.3 Grouped Frequency Distribution

Like a discrete frequency distribution, grouped (continuous) frequency distribution is used
for quantitative variable data. But, the frequency distribution of the individual values is not
interesting for a continuous variable or discrete variable with a lot of unique values.

For example, consider the age distribution of 25 individuals. If a discrete frequency distribu-
tion is constructed, the table will look like:

21

mailto:es.awol@gmail.com


Bio/Statistics- SPHM 5011 c© 2021 By: Awol S., E-mail: es.awol@gmail.com

Age Frequency

15 1
19 2
29 1
31 1
34 1
39 1
52 2
53 2
45 2
65 1
71 1
74 1
75 2
76 2
77 1
78 1
79 1
84 1
85 1

Total 25

which has too many rows and is too complex to understand. Instead, it is better to group
the different values of age into non-overlapping groups.

Hence, when the quantitative variable of interest has a lot of different values, a grouped fre-
quency distribution is constructed. Unlike a discrete distribution, several values of a variable
are grouped into one class in a grouped frequency distribution and the number of observations
belonging to each class is the frequency of that class.

Example 2.4. Consider the following age distribution of a sample of 70 persons infected
with malaria:

Class Limits Class Boundaries Frequency Percentage
(Age in years) (Age in years) (No. of persons) (%)

1 - 25 0.5 - 25.5 20 28.57
26 - 50 25.5 - 50.5 15 21.43
51 - 75 50.5 - 75.5 25 35.71
76 - 100 75.5 - 100.5 10 14.29

Total 70 100.00

From this frequency distribution, of the total 70 persons who have malaria, 20 (28.57%) of
them are between 1-25 years, 15 (21.43%) of them are in between 26-50 years, 25 (35.71%) of
them are in between 51-75 years and 10 (14.29%) of the persons are in between 76-100 years.
It is also easy to observe that most (35.71%) of the persons are between 51-75 years of age.

Basic Terms

1. Class Limits: The smallest and highest values that can be included in a particular
class are called class limits. The smallest values are called lower class limits (LCL) and
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the highest values are called upper class limits (UCL). For example, class limit of the
first class is 1 - 25, where 1 is the lower class limit and 25 is the upper class limit of the
first class.

2. Class Boundaries: Class boundaries are also similar to class limits. The smallest
values are called lower class boundaries (LCB) and the highest values are called upper
class boundaries (UCB). For example, class boundary of the first class is 0.5 - 25.5 where
the lower class boundary is 0.5 and the upper class boundary is 25.5. Note that the
UCB of one class is also the LCB of the next class.

3. Class Width (w): It is the difference between UCB and LCB of a certain class.
That is, w = UCB − LCB. Class width is also the difference between the lower limits
(boundaries) of two consecutive classes (w = LCLi − LCLi−1) or it is the difference
between upper limits (boundaries) of two consecutive classes (w = UCLi−UCLi−1). The
class width of the above frequency distribution is w = UCB1−LCB1 = 25.5− 0.5 = 25
or w = LCL2 − LCL1 = 26− 1 = 25 or w = UCL2 −UCL1 = 50− 25 = 25.

4. Class Mark: Class mark is the mid-point of each class which can approximate all the
values in that class. Or it is the half-way between the class limits (boundaries) of a
certain class. That is, CMi = LCLi+UCLi

2 = LCBi+UCBi
2 .

For example, class marks of the above distribution are CM1 = 13, CM2 = 38, CM3 = 63
and CM4 = 88. Note also that w = CMi − CMi−1.

Class mark is important, because all the observations in a particular class are approxi-
mated by its class mark in most statistical analyses.

Cumulative Frequency Distribution

A cumulative frequency distribution displays the total number of observations above (below)
a certain value. When the interest focuses on the number of observations below a certain
value, then the reference value should be an upper class boundary. It is known as less than
cumulative frequency distribution. Similarly, when the interest lies in finding the number of
observations above a certain value, then the reference values should be lower class boundaries
and the corresponding frequency distribution is known as more than cumulative frequency
distribution.

Less than cumulative frequency More than cumulative frequency
Age in years F Age in years F

< 25.5 20 > 0.5 10+25+15+20=70
< 50.5 20+15=35 >25.5 10+25+15=50
< 75.5 20+15+25=60 >50.5 10+25=35
<100.5 20+15+25+10=70 >75.5 10

Steps in Constructing Grouped FD

1. The first step in constructing a frequency distribution is to arrange the data in an array
form (preferably increasing order).

23

mailto:es.awol@gmail.com


Bio/Statistics- SPHM 5011 c© 2021 By: Awol S., E-mail: es.awol@gmail.com

2. The second step is to find the unit of measurement (u). The unit of measurement is the
smallest numerical difference between any two distinct values of a dataset.

3. The third step is to determine the range (R). Range is the maximum numerical differ-
ence in the dataset, i.e. the difference between the largest and the smallest values.

4. The fourth step in constructing a frequency distribution is to determine how many
classes it will contain. The number of classes (k) can be determined using Sturge’s
Rule, k = 1 + 3.322 × log n where n is the total number of observations in the sample
or population. Normally, the number is rounded up to the next whole number without
considering the mathematical rounding rule.

5. After determining the number of classes, the researcher should determine the class width
(w) of the frequency distribution. An approximation of the class width can be calculated
by dividing the range by the number of classes, that is, w = R

k . This will be the same
for all the classes.

6. The sixth step is to obtain the class limits. To do so, the frequency distribution should
start at a value equal to the lowest number of the raw data.

(a) For obtaining the class limits, the smallest value in the dataset can be taken as
the LCL of the first class. If S is the smallest observation, then LCL1 = S.

(b) Then, the LCL of the second class is obtained by adding the class width w to the
LCL of the first class. That is, LCL2 = S + w. Similarly, LCL3 = LCL2 + w.
Continue adding w until k classes are obtained: LCLi = LCLi−1 + w for i =
2, 3, · · · , k.

(c) Next, the UCLs of the frequency distribution are obtained by adding w− u to the
corresponding LCLs: UCLi = LCLi + (w − u) for i = 1, 2, · · · , k.

7. The last step is to generate the class boundaries. The LCBs are obtained by subtract-
ing 1

2u from the corresponding LCLs and the UCB are obtained by adding 1
2u to the

corresponding UCLs of the classes. That is, LCBi = LCLi− 1
2u and UCBi = UCLi+

1
2u

for i = 1, 2, · · · , k.

Example 2.5. The number of hours of 56 emergency patients spent in emergency room at a
given hospital is given as: 31 33 33 34 34 35 35 17 31 36 17 18 19 25 26 27 27 19 20 22 31 36
38 13 22 22 35 36 28 28 29 30 30 36 11 13 16 17 17 22 22 23 23 23 23 24 24 24 25 27 27 28
28 30 13 16. Construct a grouped frequency distribution for this data.

Solution:

1. Increasing order: 11 13 13 13 16 16 17 17 17 17 18 19 19 20 22 . . . 36 38.

2. The unit of measurement is u = 17− 16 = 1.

3. The range of the data is R = L− S = 38− 11 = 27.

4. The number of classes is k = 1 + 3.322 logN = 1 + 3.322 log 56 = 6.81 ≈ 7.

5. The class width is w = R
k = 27

6.81 = 3.96 ≈ 4.
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6. Class limits:

(a) The smallest value is 11. Thus, the LCL1 = 11.

(b) Then, the LCLs of 2nd, 3rd, 4th, · · · , 7th classes are 15, 19, 23, · · · , 35, respectively.

(c) The difference w − u = 4 − 1 = 3. Hence, the UCLs of the classes are 14, 18, 22,
· · · , 38 which are obtained by adding 3 to the corresponding LCLs.

7. 1
2u = 0.5. Class boundaries: LCBi = LCLi − 0.5 and UCBi = UCLi + 0.5 for i =
1, 2, · · · , 7.

Class Class Limit Class Boundary
Class Frequency Percentage

LCF MCF
Mark (f) (%)

1 11 - 14 10.5 - 14.5 12.5 4 7.14 4 56
2 15 - 18 14.5 - 18.5 16.5 7 12.50 11 52
3 19 - 22 18.5 - 22.5 20.5 8 14.29 19 45
4 23 - 26 22.5 - 26.5 24.5 10 17.86 29 37
5 27 - 30 26.5 - 30.5 28.5 12 21.43 41 27
6 31 - 34 30.5 - 34.5 32.5 7 12.50 48 15
7 35 - 38 34.5 - 38.5 36.5 8 14.28 56 8

Total 56 100

Example 2.6. The following data is the body mass index of a sample of 70 adults in a certain
place. Construct the grouped frequency distribution for the data.
25.4 26.6 27.5 18.1 21.9 23.0 24.3 28.8 30.9 34.8 19.2 21.9 23.1 24.3 25.6 26.9 27.5 28.8 30.9
34.9 19.8 21.9 23.1 24.5 25.7 27.1 27.6 28.9 31.0 35.0 20.2 22.3 23.3 24.6 25.7 27.3 28.2 29.3
31.1 35.5 20.7 22.3 23.4 24.6 25.8 27.3 28.3 29.5 31.3 35.8 20.8 22.3 23.5 24.7 25.8 27.3 28.3
29.8 31.6 35.9 21.1 22.4 24.0 24.7 25.9 27.3 28.3 30.0 31.6 36.6

Solution:

1. The data in an increasing order:
18.1 19.2 19.8 20.2 20.7 20.8 21.1 21.9 21.9 21.9 22.3 22.3 22.3 22.4 23.0 23.1 23.1 23.3
23.4 23.5 24.0 24.3 24.3 24.5 24.6 24.6 24.7 24.7 25.4 25.6 25.7 25.7 25.8 25.8 25.9 26.6
26.9 27.1 27.3 27.3 27.3 27.3 27.5 27.5 27.6 28.2 28.3 28.3 28.3 28.8 28.8 28.9 29.3 29.5
29.8 30.0 30.9 30.9 31.0 31.1 31.3 31.6 31.6 34.8 34.9 35.0 35.5 35.8 35.9 36.6

2. The unit of measurement is u = 23.5− 23.4 = 0.1.

3. The range of the data is R = L− S = 36.6− 18.1 = 18.5.

4. The number of classes is k = 1 + 3.322× log n = 1 + 3.322 log 70 = 7.13 ≈ 8.

5. The class width is w = R
k = 18.5

7.13 = 2.594 ≈ 2.6.

6. Class limits:

(a) The smallest value is 18.1. Thus, the LCL1 = 18.1.

(b) Then, the LCLs of 2nd, · · · , 8th classes are 20.7, · · · , 36.3, respectively.

(c) As w − u = 2.6− 0.1 = 2.5, the UCLs are 20.6, 23.2, 25.8, · · · , 38.8.
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7. 1
2u = 0.05. Class boundaries: LCBi = LCLi − 0.05 and UCBi = UCLi + 0.05.

Class Class Limit Class Boundary
Class Frequency Percentage

LCF MCF
Mark (f) (%)

1 18.1 - 20.6 18.05 - 20.65 19.35 4 5.71 4 70
2 20.7 - 23.2 20.65 - 23.25 21.95 13 18.57 17 66
3 23.3 - 25.8 23.25 - 25.85 24.55 17 24.29 34 53
4 25.9 - 28.4 25.85 - 28.45 27.15 15 21.43 49 36
5 28.5 - 31.0 28.45 - 31.05 29.75 10 14.29 59 21
6 31.1 - 33.6 31.05 - 33.65 32.35 4 5.71 63 11
7 33.7 - 36.2 33.65 - 36.25 34.95 6 8.57 69 7
8 36.3 - 38.8 36.25 - 38.85 37.55 1 1.43 70 1

Total 70 100.00

Exercise 2.4. The birth weights (in kilograms) of 30 infants were recorded as follows. Con-
struct grouped frequency distribution for this data.

2.0 2.1 2.3 3.0 3.1 2.7 2.8 3.5 3.1 3.7 4.0 2.3 3.5 4.2 3.7
3.2 2.7 2.5 2.7 3.8 3.1 3.0 2.6 2.8 2.9 3.5 4.1 3.9 2.8 2.2

Summary

In constructing a grouped frequency distribution, the following general points should be kept
in mind.

• The number of classes should be neither too large nor too small. Fewer classes would
mean greater class width with consequent loss of accuracy. Too many classes result in
greater complexity because it does not aggregate the data enough to be helpful.

• Classes should be complete (it should include all the values) and non-overlapping (no
value should belong to two classes).

• Classes should be standardized (arranged in a logical and chronological (increasing)
order) and continuous (a class must be included in the frequency distribution even if
there are no values in that class).

• Open ended classes, where there is no lower limit of the first class or no upper limit of the
last class, should be avoided since this creates difficulty in analysis and interpretation.

Grouped frequency distribution has the advantage of reducing a large mass of data into a
comparatively small table, that is, it makes summarization easy. It also helps for further
statistical analysis like central tendency, variation, skewness, kurtosis, · · · . On the other
hand, the identity of the observations is lost. That is, only the number of observations in
a class is known but it is unknown what the values are in a class. Hence, the original data
cannot be reconstructed from a grouped frequency distribution.

Exercise 2.5. Given the following frequency distribution of pathologic tumor size (in cm)
for a sample of 110 cancer patients:
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Tumor size in cm Frequency

0.25 - 0.75 13
0.75 - 1.25 36
1.25 - 1.75 17
1.75 - 2.25 18
2.25 - 2.75 15
2.75 - 3.25 11

Total 110

1. What is the variable of interest?

2. What percent of patients is with an approximate level of pathologic tumor size of 2cm?

3. What number of cancer patients is with lowest pathologic tumor size?

4. What is the approximate size of pathologic tumor with highest percentage of patients?

5. What is the percentage of cancer patients with pathologic tumor size less than 0.25cm?

6. How many cancer patients have pathologic tumor size above 3.25cm?

7. How many patients have tumor size more than 1.25cm?

8. What percentage of the measurements are between 1.25cm and 2.25cm?

9. What proportion of the measurement is less than or equal 2.75cm?

2.3 Charts and Graphs

The second way and the most effective mechanisms for presenting data in a form meaningful
to decision makers is through the use of charts and graphs. Charts and graphs have greater
attraction and memorizing effect than mere figures. They also facilitate comparison, and are
used to understand patterns and trends.

Charts and graphs give quick impression of the data. Hence, through charts and graphs, the
decision maker can often get an overall picture of the data and reach some useful conclusions.

2.3.1 Pie Chart

Pie chart is a circle used to display one-way frequency distributions (categorical or discrete)
and also quantitative data given in different categories (values) of a qualitative or discrete
variable. The total area of the circle represents 100% of the sum of the frequencies (magni-
tudes) of all the categories (values) of the variable. The circle is divided into a number of
slices where the size of each slice corresponds to the percentage frequency (magnitude) corre-
sponding to each category (value) of the variable. The slices are marked differently (different
lines or dots) or by different colors to identify each category of the variable of interest.

Example 2.7. Construct pie chart for the following frequency distribution.
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Marital status Number of individuals

Single 70
Married 100
Divorced 30
Other 10

Total 210

Solution: Construction of the pie chart begins by determining the proportion of each category
to the whole, and then the degree coverage of each category frequency should be calculated.
Hence, to obtain the angle for any category, the relative frequency is multiplied by 360 degrees
(fin × 360).

Marital status Degree

Single ( 70/210)× 360 = 119.99
Married (100/210)× 360 = 171.43
Divorced ( 30/210)× 360 = 51.44
Other ( 10/210)× 360 = 17.14

Total 360

Exercise 2.6. Construct a pie chart using the data from example 2.1 and example 2.3.

2.3.2 Bar Charts

A bar chart is another widely used chart for presenting categorical or discrete frequency dis-
tributions (both one-way and two-way frequency tables) and also quantitative data given in
different categories (values) of a qualitative or discrete variable.

The categories or values of the variable are marked along the x−axis and the frequencies
(proportions, percentages) corresponding to the categories of that variable are marked along
the y−axis. As a result, the heights of the bars represent the frequencies corresponding to
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the classes. But, the width of the bars has no meaning; however, all the bars should have the
same width to avoid confusion. In addition, the bars are separated by a constant distance so
as not to imply continuity.

There are three types of bar charts: simple, component (stacked) and multiple (clustered)
bar charts.

Simple Bar Chart

The first use of a simple bar-chart is for presenting one-way (categorical or discrete) frequency
distribution. It is constructed from the same type of frequency distribution (categorical or
discrete) and data that is used to produce a pie chart.

Example 2.8. Construct a simple bar chart for the data given in example 2.7.

Example 2.9. Construct a simple bar chart for the number of children given in example 2.3.

Exercise 2.7. Construct a simple bar chart using the data from example 2.1 and example 2.3.
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In addition, like a pie chart, simple bar chart is also used to present quantitative data, that
is, given along the different categories (values) of qualitative or discrete variable. The interest
in constructing a simple bar chart is to explore a quantitative variable (usually, a dependent
variable) given along the different categories (values) of a qualitative or discrete variable
(usually, an independent variable). The categories (values) of the variable are marked along
the x−axis and the magnitudes corresponding to the categories of that variable are marked
along the y−axis.

Example 2.10. The following data shows 1464 HIV/AIDS patients classified by clinical stage
when they started HAART treatment and also the average number of CD4 counts in each
clinical stage.

Stage Number of patients Average CD4 counts

Stage I 347 251.6
Stage II 514 203.6
Stage III 496 167.7
Stage IV 107 140.6

This bar chart clearly shows that as the clinical stage (severity) of the HIV/AIDS patients
increases, the average CD4 count decreases.

An advantage of using a bar chart over a pie chart for a given dataset is that for categories
that are close in frequency or magnitude, it is considered easier to see the difference in the
bars of a bar chart than discriminating between the slices of a pie chart.

Component Bar Chart

Component bar chart is used to display two-way frequency distributions and it is also used to
present the magnitude of a quantitative variable (usually, a dependent variable) given along
a combinations of the different categories (values) of two qualitative or discrete variables
(usually, independent variables). Here, there is a desire to show the frequency or magnitude
of each category of the first variable divided into its component parts based on the categories
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of the second variable. In such type of charts, each bar is subdivided into parts in proportion
to the frequency or magnitude of each category of the second variable. The subdivided bars
are shaded by different colors, lines or dots for identifying the components (categories of the
second variable).

Example 2.11. Construct component bar chart for the following data.

Marital status Male Female Total

Single 40 30 70
Married 20 80 100
Divorced 10 20 30
Other 0 10 10

Total 70 140 210

Sometimes, the total number of observations or magnitudes corresponding to the different
categories of a variable may be greatly different. For making meaningful comparisons, the
frequencies or magnitudes of the categories are converted to percentages. In that case, each
category will have 100 as its maximum frequency. This sort of bar chart is known as percentage
component bar chart.

Example 2.12. Construct percentage component bar chart for the above data, example 2.11.
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Multiple Bar Chart

Multiple bar chart is used to display the frequencies (magnitudes) of two or more variables
data given at different places, periods or timings. Different bars are used represent the
different variables at the same place, period or timing. The bars at different places, periods
or timings are separated by a constant (an equal) space. The different bars representing the
different variables are shaded by different colors, lines or dots for identifying the variables.

Example 2.13. The number of new cases of cold, malaria and HIV/AIDS from 2001 to 2004
in a certain place is shown below. Construct multiple bar chart for this data.

Year Cold Malaria AIDS

2001 120 100 70
2002 50 90 80
2003 100 120 70
2004 90 80 80
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Multiple bar chart can also be used for displaying two-way frequency tables.

Example 2.14. Present the data given in example 2.11 using multiple bar chart.

Solution: Two possible multiple bar charts can be constructed. One is by marking the
marital status categories along the x-axis and using the categories of gender as clusters.

The other is by marking the gender categories along the x-axis and using the categories of
marital status as clusters.
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In addition, a multiple bar chart is used to present the magnitude of a quantitative variable
(usually, a dependent variable) along the categories (values) of two qualitative or discrete
variables (usually, independent variables).

Example 2.15. The following table presents the average CD4 counts of 1464 HIV/AIDS
patients classified by their educational level and clinical stage (values in parenthesis are fre-
quencies). Construct multiple bar chart for this data.

Education Level
Clinical Stage

Stage I Stage II Stage III Stage IV

No Education 282.4 ( 65) 209.6 ( 95) 166.2 (110) 106.3 (27)
Primary 264.4 (119) 222.7 (194) 172.8 (168) 135.8 (34)
Secondary 243.4 (116) 192.2 (169) 172.0 (173) 148.2 (34)
Tertiary 194.1 ( 45) 160.9 ( 55) 136.0 ( 45) 183.9 (10)

Solution: By marking the education level categories in the x-axis and using the categories of
clinical stage as clusters, the multiple bar chart showing the average number of CD4 counts
is shown below.
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2.3.3 Line Graph

A line graph is used for displaying the magnitude of a quantitative variable measured over
time (time-series data). The time variable (in weeks, months or years) is marked along the
horizontal x−axis, and the values of the variable being studied is marked on the vertical
y−axis. Then the intersection points of the value of the variable and the corresponding time
points are joined by a line.
Such a graph is useful for assessing and monitoring the trend of a particular situation, like
epidemics, overtime. It is also used to examine the relationship between the variable of
interest and time.

Example 2.16. The first case of COVID-19 case was found in Ethiopia on March 13, 2020
and the total number of cases in the year was 124264. The distribution of the number of cases
from March to December 2020 is presented in the following table.

Month Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Cases 26 105 1041 4674 11684 34601 23237 20801 13905 14190 124264

Construct a line graph for this data.

Solution: The months are marked in the x− axis and the number of cases are marked along
in the y−axis. Then, the line graphs looks as follows.
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2.3.4 Histogram

Histogram is the most common and widely used graphical presentation used for quantitative
data (grouped frequency distribution). It is constructed by marking the values (class bound-
aries) of the variable of interest on the x−axis, and the frequencies (preferably relative or
percentage frequencies) along the y−axis.

Unlike a bar chart, a histogram uses a series of adjacent or contiguous bars. The base of each
bar is determined by the class boundaries on the horizontal axis and the height of each bar is
the frequency, relative frequency and percentage frequency of the corresponding class. As a
result, the width of each bar represents the class width of the frequency distribution and the
height of each bar represents the frequency, relative, or percentage frequency of each class.

Example 2.17. Construct a histogram for the BMI frequency distribution of adults, exam-
ple 2.6.

Solution: The histogram of the BMI frequency distribution is constructed by marking the
class boundaries in the x-axis and the corresponding frequencies along the y-axis.
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2.3.5 Frequency Curve

A frequency curve, like the histogram, is a graphical display of a continuous frequency dis-
tribution. It is a smooth line graph connecting the intersection points of class marks and
frequencies, relative or percentage frequencies of the classes. Construction of a frequency
curve begins by labeling the class marks along the horizontal axis and the frequencies along
the vertical axis. The rightmost and leftmost points are zero, that is, the curve starts at zero
and ends at zero.

Example 2.18. Construct frequency polygon for the BMI frequency distribution, exam-
ple 2.6.

Solution: The frequency curve is constructed by marking the class marks in the x-axis and
the corresponding frequencies along the y-axis.

Clearly, a frequency curve is similar to a histogram except that there are no bars, only a point
in the midpoint of each class at a height proportional to the frequency, relative or percentage
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frequency of the class. It can also be constructed by joining the mid-points of the bars of a
histogram.

Notes

Effective charts and graphs are simple and clean: thus, it is important that the chart or
graph be self-explanatory (i.e., have a figure number for ease of referencing, a descriptive
title, properly labeled axes, and an indication of the units of measurement).

A chart or graph is indeed worth a thousand words and is a powerful means of communicating
a great deal of information. But, often some individuals present the data on a stretched or
compressed scales of the axes of a chart or graph with the aim of showing whatever they
want to show. Such a display affects the user’s impression of what the graph represents and
is misleading. This is one important argument against a merely descriptive approach to data
analysis and an argument for statistical inference. Hence, it is important as a user to clearly
understand the scales used for the axes of the chart or graph.

2.4 Shapes of Distributions

One of the most important uses of a histograms and/or frequency curve is to examine how
the frequencies are distributed over the values of a quantitative variable and hence, get some
idea of the shape or form of a distribution. Hence, examination of a histogram or a frequency
curve reveals which values of the variable are highly frequent or which values are less frequent.
Had the frequencies of the classes of a frequency distribution been all equal, the frequency
curve would be a straight line.

2.4.1 Symmetric Distributions

A frequency curve is said to be symmetric when it looks the same to the left and right of the
central point. There can be a U-shaped, a Bell-shaped or other possible symmetric curves.
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In symmetric curves, the frequency distribution spread around a central value in a similar
pattern, that is, the lengths of both tails looks the same. In such symmetric distributions,
the number of values below and above the central point are equal.

The distributions of data in applications are never perfectly symmetric, but may be roughly
symmetric.

2.4.2 Skewed Distributions

Skewness is the lack of symmetry of a distribution. If the frequency curve is symmetrical,
then it has no skewness.

In a skewed (asymmetrical) distribution, the frequency of large and small values are different.
For example, if a few values are extremely large, the right tail of the frequency curve is more
elongated. In such case, the distribution is said to be positively skewed (skewed to the right).
The histogram of a positively skewed distribution looks:

On the other hand, if there are a few extremely small values, the left tail is more elongated,
and the distribution is said to be negatively skewed (skewed to the left). The histogram of a
negatively skewed distribution looks:
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The frequency curves of a positively and negatively skewed distributions look:
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Chapter 3

Measures of Central Tendency

Usually the collected data is not suitable to draw conclusions about the mass from which
it has been taken. Even though the data will be, somewhat summarized after it has been
organized into a frequency distribution and presented using charts and graphs, they do not
allow us to make concise statements that characterize the distribution of values as a whole.
Therefore, there is a need for further condensation, particularly to compare two or more
distributions. That is, the entire distribution should be reduced into a single value which can
be considered as typical or representative of the set of values. Such a typical value that tends
to lie centrally within a set of values of a particular quantitative variable in a dataset is called
a measure of central tendency.

3.1 Objectives of MCT

1. To condense a mass of data into one single value: A measure of central ten-
dency, by condensing masses of data into one single value, enables us to get an idea of
the characteristics of the entire dataset. Thus, one value can represent thousands of
observations of a variable, even more.

2. To facilitate comparison: Statistical devises like averages, percentages and ratios are
used for this purpose. For example, to compare the performances of two classes, A and
B, instead of comparing each student result, which is infeasible, we can compare the
average marks of the two classes.

3.2 Characteristics of Good MCT

There are many types of measures of central tendency, each possessing particular properties
and each being typical in some unique way. The most frequently encountered ones are:

• Computed averages: Mean (Arithmetic Mean, Geometric Mean and Harmonic Mean)

• Positional averages: Median and Quantiles (Quartiles, Deciles and Percentiles)

• Mode

However, a measure of central tendency is good or satisfactory if it possesses the following
characteristics. Of course, there is no measure which satisfy all these properties:
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1. It should be calculated based on all the values of the variable.

2. It should not be affected by extreme values. It should be as close to the maximum
number of observed values as possible.

3. It should be defined rigidly which means it should have a definite (unique) value.

4. It should always exist.

5. It should be stable with regard to sampling. This means that if a number of samples
of the same size are drawn from a population, the measure of central tendency with a
minimum variation should be preferred.

3.3 Summation Notation

The sum of n values, x1 + x2 + · · · + xn, is denoted by the Greek letter Σ (Sigma) as
n∑
i=1

xi

and it is called the summation notation. Let us see some of its properties:

•
n∑
i=1

c = nc where c is a constant.

•
n∑
i=1

(xi ± c) =
n∑
i=1

xi ± nc

•
n∑
i=1

cxi = c
n∑
i=1

xi

•
n∑
i=1

x2
i = x2

1 + x2
2 + · · ·+ x2

n

•
n∑
i=1

x2
i 6= (

n∑
i=1

xi)
2

•
n∑
i=1

(xi ± yi) =
n∑
i=1

xi ±
n∑
i=1

yi

•
n∑
i=1

xiyi = x1y1 + x2y2 + · · ·+ xnyn

•
n∑
i=1

xi
n∑
i=1

yi = (x1 + x2 + · · ·+ xn)(y1 + y2 + · · ·+ yn)

•
n∑
i=1

xiyi 6=
n∑
i=1

xi
n∑
i=1

yi

•
n∑
i=1

(xi ± yi)2 =
n∑
i=1

x2
i ± 2

n∑
i=1

xiyi +
n∑
i=1

y2
i
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3.4 Mean

3.4.1 Simple Arithmetic Mean

The arithmetic mean is the simplest but most useful measure of central tendency. It is the
’average’ which we compute in our high school arithmetic. It is defined as the sum of all the
values of a variable divided by the number of values.

Raw Data

• For a population of N values, x1, x2, · · · , xN of a particular variable; the population
mean (denoted by the Greek letter mu, µ) is given by:

µ =
x1 + x2 + · · ·+ xN

N
=

N∑
i=1

xi

N

• For a sample of n raw values, x1, x2, · · · , xn of a varaible; the sample mean (denoted by
x̄ and read as x bar) is:

x̄ =
x1 + x2 + · · ·+ xn

n
=

n∑
i=1

xi

n

Example 3.1. Find the mean of a sample of 3 values given as 2, 4 and 8.

Solution: There are 3 values, adding all the values and dividing by 3 gives the mean.

x̄ =

3∑
i=1

xi

3
=

2 + 4 + 8

3
=

14

3
= 4.67

Example 3.2. The heart rates of 10 patients is 60, 70, 64, 55, 70, 80, 70, 74, 51, 80. Calculate
the mean heart rate.

Solution: Adding all the 10 values and then dividing by 10 gives the mean heart rate.

µ =

10∑
i=1

xi

10
=

60 + 70 + 64 + 55 + 70 + 80 + 70 + 74 + 51 + 80

10
=

674

10
= 67.4

The average heart rate of the patients is about 67.

Note: The calculation of a sample mean uses the same algorithm as for a population mean
and will produce the same answer if computed on the same data. However, it is inappropriate
to compute a sample mean for a population or a population mean for a sample. Because
both population and sample are important in statistics, a separate symbol is necessary for
the population mean and for the sample mean.
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Grouped Data

For discrete or grouped frequency distributions with k classes, the sample mean is determined
as:

x̄ =

k∑
i=1

fixi

k∑
i=1

fi

=
f1x1 + f2x2 + · · ·+ fkxk

f1 + f2 + · · ·+ fk

where xi is the ith class value for a discrete frequency distribution or the ith class mark for a

grouped frequency distribution and fi is the corresponding frequency where n =
k∑
i=1

fi.

Example 3.3. Find the mean number of children for the discrete frequency distribution
constructed in example 2.3.

Solution: To find the mean number of children of the discrete frequency distribution, the
necessary calculations are as follows:

Class Number of children (xi) Number of families (fi) fixi
1 0 1 0
2 1 4 4
3 2 7 14
4 3 5 15
5 4 3 12
6 5 1 5

Total
∑
fi = 21

∑
fixi = 50

Hence, x̄ =

6∑
i=1

fixi

6∑
i=1

fi

= 50
21 = 2.38. On average, each family has about 2.38 children.

Example 3.4. Find the mean BMI for the frequency distribution constructed in example 2.6.

Solution: To find the mean BMI of the frequency distribution, the necessary calculations
are as follows:

Class Class Boundary Class Mark (xi) Frequency (fi) fixi
1 18.05 - 20.65 19.35 4 77.40
2 20.65 - 23.25 21.95 13 285.35
3 23.25 - 25.85 24.55 17 417.35
4 25.85 - 28.45 27.15 15 407.25
5 28.45 - 31.05 29.75 10 297.50
6 31.05 - 33.65 32.35 4 129.40
7 33.65 - 36.25 34.95 6 209.70
8 36.25 - 38.85 37.55 1 37.55

Total
∑
fi = 70

∑
fixi = 1861.50

Thus, x̄ =

8∑
i=1

fixi

8∑
i=1

fi

= 1861.50
70 = 26.59. The mean BMI of the 70 adults is 26.59 kg/m2.
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Properties of Arithmetic Mean

• The algebraic sum of the deviations of each value from the arithmetic mean is always

zero. That is,
n∑
i=1

(xi − x̄) = 0.

• The sum of the squares of the deviations from the mean is less than the sum of the

squares of the deviations from other value. That is,
n∑
i=1

(xi − x̄)2 <
n∑
i=1

(xi − a)2, a 6= x̄.

• If a constant c is added to (subtracted from) each value in a distribution, then the new
mean will be increased by c, that is, x̄new = x̄old ± c.

• If each value of a distribution is multiplied by a nonzero constant c, the new mean will
be the original mean multiplied by c, that is, x̄new = c× x̄old.

Exercise 3.1. The mean of 100 values was found to be 40. It was latter discovered that a
value was misread as 83 instead of 53. Find out the correct mean.

Exercise 3.2. The mean of 200 items was found to be 50. Later on it was discovered that
two items were wrongly read as 92 and 8 instead of the correct values 192 and 88 respectively.
Find the correct mean.

3.4.2 Weighted Arithmetic Mean

While calculating the simple arithmetic mean, equal importance is given to all values. But,
there are cases where the relative importance (weight) is not the same for all values. When
this is the case, it is necessary to assign the observations different weights and then calculate
the mean called weighted arithmetic mean.

Let x1, x2, · · · , xn be the values and w1, w2, · · · , wn be the corresponding weights. Then,
the weighted arithmetic mean is denoted by x̄w and is given by:

x̄w =

n∑
i=1

wixi

n∑
i=1

wi

=
w1x1 + w2x2 + · · ·+ wnxn

w1 + w2 + · · ·+ wn

Example 3.5. A teacher attaches 2 to quiz, 3 to midterm and 5 for final exam. If a student
gets 90, 50 and 60 for quiz, midterm and final exam, respectively, what is the average aca-
demic performance of the student?

Solution: The variable of interest is score with three values xi = 90, 50, 60 and their corre-
sponding weights are wi = 2, 3, 5.

x̄w =

3∑
i=1

wixi

3∑
i=1

wi

=
2(90) + 3(50) + 5(60)

2 + 3 + 5
=

630

10
= 63

The average academic performance of the student is 63.
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3.4.3 Combined Mean

If there are g different groups having the same units of measurement with mean x̄1, x̄2, · · · ,
x̄g; and number of sample observations n1, n2, · · · , ng; respectively, then the mean of all the
groups called combined mean (denoted by x̄c) is given by:

x̄c =

g∑
i=1

nix̄i

g∑
i=1

ni

=
n1x̄1 + n2x̄2 + · · ·+ ngx̄g

n1 + n2 + · · ·+ ng
.

Example 3.6. The mean weight of 50 women working in a hospital is 48 kilograms. The
mean weight of 75 men working in the same hospital is 58 kilograms. Find the mean weight
of all workers in the hospital.

Solution: Given nw = 50, x̄w = 48, nm = 75, x̄m = 58. Required x̄c =?

x̄c =
nwx̄w + nmx̄m
nw + nm

=
50(48) + 75(58)

50 + 75
=

6750

125
= 54.

The mean weight of all the 125 persons working in the hospital is 54 kg.

Example 3.7. The mean mark in statistics of 50 students in a class was 72 and that of the
35 boys was 75. Find the mean mark of the girls in the class.

Solution: Given n = 50, x̄c = 72, nb = 35, x̄b = 75,⇒ ng = n−nb = 50−35 = 15. Required
x̄g =?.

x̄c =
nbx̄b + ngx̄g

n
⇒ x̄g =

nx̄c − nbx̄b
ng

=
50(72)− 35(75)

15
= 65.

The mean mark of the 15 girls in the class is 65.

Note: The arithmetic mean fulfils all characteristic of good measures of central tendency
with the exception that it is highly affected by extreme values (a few very large or very small
values). For example, the mean for the values 115, 110, 119, 117, 121 and 126 is x̄ = 118.
Similarly, the mean for the values 85, 65, 87, 73 and 280 is again 118. But, this mean value is
not a good measure of central tendency for the second dataset because out of the five values,
most (four) of the values are 87 or less. Hence, this mean is not representative of the second
dataset as a whole.

In addition, a mean cannot be calculated for a frequency distribution with open-ended classes
(a frequency distribution with no lower class boundary of the first class or with no upper class
boundary of the last class or with both).

Mean is not appropriate for qualitative (either nominal or ordinal) variables’ data. Such data
is summarized by obtaining the frequency and percentage of each category of the variable.

3.5 Median

It has been pointed out that mean is affected by extreme values to a great extent. Hence,
some better measure is preferable and median is one of them. Median (denoted by x̃) ia a
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single point that divides a set of ordered values of a particular variable into two equal parts
such that half (50%) of the values of the variable are less than it and the remaining half (50%)
of the values are greater than it.

Raw Data or Discrete FD

The median for a set of n values is the middle value if n is odd or the arithmetic mean of
the middle two values if n is even. That is, if n is odd, x̃ =

(
n+1

2

)th
value; if n is even,

x̃ =
(n2 )

th
value+(n2 +1)

th
value

2 . Note here, before using the these formula, the values should be
arranged in an ascending order of their magnitude.

Example 3.8. Find the median of 180, 201, 220, 191, 219, 209 and 220.

Solution: There are n = 7 (n is odd) values. Hence, the median is the middle value after
arranging in an increasing order. That is, x̃ = 4th value=209. This means, about 50% of the
values are below 209 or about 50% of the values are above 209.

Example 3.9. Consider 62, 63, 64, 65, 66, 66, 68 and 78; and calculate the median.

Solution: There are n = 8 (n is even) values. Thus, the median is the average of the middle

two values (4th and 5th values). Thus, x̃ = 4th value+5th value
2 = 65+66

2 = 65.5. About 50% of
the values are below 65.5 or about 50% of the values are above 65.5.

Exercise 3.3. Find the median number of children using the discrete frequency distribution
constructed under example 2.3 and interpret it.

Grouped FD

To find median for a grouped frequency distribution, the median class should be identified
first. The median class is the class corresponding to the minimum less than cumulative fre-
quency that contains the value n

2 where n is the total number of observations.

Then, the median value is given by the formula:

x̃ = Lx̃ +

( n
2 − Fx̃−1

fx̃

)
× w

where Lx̃ is the lower class boundary of the median class, Fx̃−1 is the less than cumulative
frequency just before the median class (it is the sum of all the frequencies up to but not
including the median class), fx̃ is frequency of the median class and w is the class width of
the median class.

Example 3.10. Find the median of the BMI frequency distribution constructed in exam-
ple 2.6 and interpret it.

Solution: First, calculate less than cumulative frequencies and identify the median class.
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Class Class Boundary fi LCF (Fi)

1 18.05 - 20.65 4 4
2 20.65 - 23.25 13 17
3 23.25 - 25.85 17 34
4 25.85 - 28.45 15 49
5 28.45 - 31.05 10 59
6 31.05 - 33.65 4 63
7 33.65 - 36.25 6 69
8 36.25 - 38.85 1 70

Total 70

The median class is the class having the less than cumulative frequency containing the value
n
2 = 70

2 = 35. This implies, the 4th class is the median class: 25.85 - 28.45.

x̃ = 25.85 +

(
35− 34

15

)
× 2.6 = 25.85 + 0.17 = 26.02.

Therefore, 50% of the adults have BMI below 26.02 kg/m2 or 50% of the adults have BMI
above 26.02 kg/m2.

Exercise 3.4. Find the median of the following data.

Class 13.5-22.5 22.5-31.5 31.5-40.5 40.5-49.5 49.5-58.5

Frequency 3 9 12 20 3

Note: Median is not sensitive to extreme values, that is, it is robust. It can also be calculated
for frequency distributions with open-ended classes.

3.6 Other Measures of Location: Quantiles

As discussed before, median divides a set of values, arranged in order, into two equal parts.
There are also other positional measures that divide a set of values arranged in order into
more than two equal parts. These measures are collectively known as quantiles, which include
quartiles, deciles and percentiles.

3.6.1 Quartiles

Quartiles are points that divide a set of values, arranged in order, of a variable into four
equal parts. Thus, there are 3 points denoted by Q1 (called lower quartile), Q2 (called middle
quartile) and Q3 (called upper quartile). This means, 25% of the values of the variable are
below Q1, 50% of the values are below Q2 and 75% of the values are below Q3.

Raw Data or Discrete FD

Let Qi be the ith quartile (i = 1, 2, 3), then Qi =
[
i(n+1)

4

]th
value, i = 1, 2, 3.

Example 3.11. Consider the observations 62, 63, 64, 65, 66, 66, 68; and determine Q1, Q2

and Q3.
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Solution: The n = 7 observations are already arranged in an increasing order. Then,

Q1 =
[

(7+1)
4

]th
value = 2nd value = 63

Q2 =
[

2(7+1)
4

]th
value = 4th value = 65

Q3 =
[

3(7+1)
4

]th
value = 6th value = 66

Note: If the ith quartile position index is not a whole number or if it has decimals, linear
interpolation is used. For instance, if Qi = (I.D)th value, it can be obtained as Qi =
Ith value + 0.D{(I + 1)th value− Ith value}).

Example 3.12. Given 420, 430, 435, 438, 441, 449, 490, 500, 510 and 515. Find all quartiles.

Solution: As usual, the observations should be arranged in an increasing order.

Q1 =
[

(10+1)
4

]th
value = 2.75th value = 2nd + 0.75 (3rd - 2nd) = 430+0.75(435-430) = 433.75

Q2 =
[

2(10+1)
4

]th
value = 5.5th value = 5th + 0.5 (6th - 5th) = 441+0.5(449-441) = 445

Q3 =
[

3(10+1)
4

]th
value = 8.25th value = 8th + 0.25 (9th - 8th) = 500+0.25(510-500)= 502.5

Grouped FD

Like the median, to find the ith quartile for a grouped frequency distribution, its class should
be identified first. The ith quartile class is the class corresponding to the minimum less than
cumulative frequency that contains the value in

4 . Then, the Qi value is given by:

Qi = LQi +

(
in
4 − FQi−1

fQi

)
× w, i = 1, 2, 3

where LQi is the lower class boundary of the ith quartile class, FQi−1 is the less than cumulative
frequency just before the ith quartile class, fQi is frequency of the ith quartile class and w is
the class width of the ith quartile class.

Example 3.13. Calculate all quartiles for the BMI frequency distribution constructed in
example 2.6 and interpret the results.

Solution: Calculate the less than cumulative frequencies first. These are already obtained
in the solution section of example 3.10.

Q1 class: n
4 = 70

4 = 17.5. The Q1 class is the 3rd class: 23.25− 25.85.

Q1 = LQ1 +

( n
4 − FQ1−1

fQ1

)
× w = 23.25 +

(
17.5− 17

17

)
× 2.6 = 23.25 + 0.08 = 23.33.

→ 25% of the adults have BMI below 23.33 kg/m2 or 75% of the adults have BMI above
23.33 kg/m2.

Q2 class: 2n
4 = 2(70)

4 = 35. The Q2 class is the 4th class: 25.85− 28.45.

Q2 = LQ2 +

(
2n
4 − FQ2−1

fQ2

)
× w = 25.85 +

(
35− 34

15

)
× 2.6 = 25.85 + 0.17 = 26.02.
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→ 50% of the adults have BMI below 26.02 kg/m2 or 75% of the adults have BMI above
26.02 kg/m2.

Q3 class: 3n
4 = 3(70)

4 = 52.5. The Q3 class is the 5th class: 28.45− 31.05.

Q3 = LQ3 +

(
3n
4 − FQ3−1

fQ3

)
× w = 28.45 +

(
52.5− 49

10

)
× 2.6 = 28.45 + 0.61 = 29.06.

→ 75% of the adults have BMI below 29.06 kg/m2 or 25% of the adults have BMI above
29.06 kg/m2.

3.6.2 Deciles

Deciles are points that divide a set of values, arranged in order, of a variable into ten equal
parts. Here, there are 9 points denoted by D1, D2, · · · , D9. This means, 10% of the values of
the variable are below D1, 20% of the values are below D2, · · · , 90% of the values are below
D9.

Raw Data or Discrete FD

Let Di be the ith decile (i = 1, 2, · · · , 9), then Di =
[
i(n+1)

10

]th
value, i = 1, 2, · · · , 9. Like the

quartiles, if the ith decile position index is not a whole number, linear interpolation is used.

Example 3.14. Given the data: 420, 430, 435, 438, 441, 449, 490, 500, 510 and 515. Find
the 1st and 7th deciles.

Solution: As before, the observations of the variable should be arranged in an increasing
order.

D1 =
[

(10+1)
10

]th
value = 1.1st value = 1st + 0.1 (2nd - 1st) = 420+0.1(430-420) = 421

D7 =
[

7(10+1)
10

]th
value = 7.7th value = 7th + 0.7 (8th - 7th) = 490+0.7(500-490)= 497

Grouped FD

For a frequency distribution, the ith decile class is the class corresponding to the minimum
less than cumulative frequency that contains the value in

10 . Thus,

Di = LDi +

(
in
4 − FDi−1

fDi

)
× w, i = 1, 2, · · · , 9

where LDi is the lower class boundary of the ith decile class, FDi−1 is the less than cumulative
frequency just before the ith decile class, fDi is frequency of the ith decile class and w is the
class width of the ith decile class.

Example 3.15. Calculate the 5th and 8th deciles for the BMI frequency distribution con-
structed in example 2.6 and interpret the results.
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Solution: The less than cumulative frequencies are already presented in the solution section
of example 3.10.
D5 class: 5n

10 = 5(70)
10 = 35. The D5 class is the 4th class: 25.85− 28.45.

D5 = LD5 +

(
5n
10 − FD5−1

fD5

)
× w = 25.85 +

(
35− 34

15

)
× 2.6 = 25.85 + 0.17 = 26.02.

→ 50% of the adults have BMI below 26.02 kg/m2 or 50% of the adults have BMI above
26.02 kg/m2.

D8 class: 8n
10 = 8(70)

10 = 56. The D8 class is the 5th class: 28.45− 31.05.

D8 = LD8 +

(
8n
10 − FD8−1

fD8

)
× w = 28.45 +

(
56− 49

10

)
× 2.6 = 28.45 + 0.7 = 29.15.

→ 80% of the adults have BMI below 29.15 kg/m2 or 20% of the adults have BMI above
29.15 kg/m2.

3.6.3 Percentiles

Percentiles are points that divide a set of values, arranged in order, of a varaible into 100
equal parts. The 99 points are denoted by P1, P2, · · · , P99.

Raw Data or Discrete FD

Let Pi be the ith percentile (i = 1, 2, · · · , 99), then Pi =
[
i(n+1)

100

]th
value, i = 1, 2, · · · , 99.

Example 3.16. Given 420, 430, 435, 438, 441, 449, 490, 500, 510 and 515. Find the 40th

and 75th percentiles.

Solution: The observations should be arranged in an increasing order.

P40 =
[

40(10+1)
100

]th
value = 4.4th value = 4th + 0.4 (5th - 4th) = 438+0.4(441-438) = 439.2

P75 =
[

75(10+1)
100

]th
value = 8.25th value = 8th + 0.25 (9th - 8th) = 500+0.25(510-500) = 502.5

Grouped FD

For a frequency distribution, the ith percentile class is the class corresponding to the minimum
less than cumulative frequency that contains the value in

100 . Then, the ith percentile value is
given by:

Pi = LPi +

(
in
4 − FPi−1

fPi

)
× w, i = 1, 2, · · · , 99

where LPi is the lower class boundary of the ith percentile class, FPi−1 is the less than
cumulative frequency just before the ith percentile class, fPi is frequency of the ith percentile
class and w is the class width of the ith percentile class.

Example 3.17. Calculate the 30th and 80th percentiles for the BMI frequency distribution
constructed in example 2.6 and interpret the results.
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Solution: Recall the cumulative frequencies presented in the solution section of example 3.10.
P30 class: 30n

100 = 30(70)
100 = 21. The P30 class is the 3rd class: 23.25− 25.85.

P30 = LP30 +

(
30n
100 − FP30−1

fP30

)
× w = 23.25 +

(
21− 17

17

)
× 4 = 23.25 + 0.61 = 23.86.

→ 30% of the adults have BMI below 23.86 kg/m2 or 70% of the adults have BMI above
23.86 kg/m2.

P90 class: 90n
100 = 90(70)

100 = 63. The P90 class is the 6th class: 31.05− 33.65.

P90 = LP90 +

(
90n
100 − FP90−1

fP90

)
× w = 31.05 +

(
63− 59

4

)
× 4 = 31.05 + 2.6 = 33.65.

→ 90% of the adults have BMI below 33.65 kg/m2 or 10% of the adults have BMI above
33.65 kg/m2.

Relationship between Median, Quartiles, Deciles and Percentiles

x̃ = Q2 = D5 = P50, Qi = Pi×25, i = 1, 2, 3, Di = Pi×10, i = 1, 2, · · · , 9

3.7 Mode

Mode (denoted by x̂) is another measure of central tendency. The mode of a set of values is
the value(s) that occurs most frequently. For instance, if a shoe size of 41 has the maximum
demand by males, size number 41 is the modal shoe size. A dataset may have one mode
(uni-modal) or two modes (bi-modal), more than two modes (multi-modal) or no mode at all
(i.e. when all observations are equally frequent).

Raw Data or Discrete FD

In individual series cases or discrete frequency distributions, the mode can be found by in-
spection.

Example 3.18. Find the mode of the following datasets.

a. 110, 113, 116, 116, 118, 118, 118, 121 and 123.

b. 2, 3, 5, 7 and 8.

c. 15, 18, 18, 18, 20, 22, 24, 24, 24, 26 and 26.

d. 5, 6, 6, 7, 9, 9, 10, 12 and 12.

e. 1, 1, 0, 1, 0, 0, 0, 2, 4 and 3.

Solution: The modal value of each dataset is just the value with the highest frequency.

a. Since 118 occurs more than other values, the mode is 118.

b. Each value occurs once (equally frequent), the data has no mode.

52

mailto:es.awol@gmail.com


Bio/Statistics- SPHM 5011 c© 2021 By: Awol S., E-mail: es.awol@gmail.com

c. 18 and 24 occur three times, hence the modal values are 18 and 24 (bi-modal).

d. Tri-modal (multi-modal): 6, 9 and 12.

e. The modal value here is 0 as it occurs more number of times than other values.

Exercise 3.5. Find the modal values of the categorical frequency distribution given in ex-
ample 2.1 and discrete frequency distribution given in 2.3, and interpret them.

Note: If a dataset is not exactly bi-modal (multi-modal) but contains two (more than two)
values that are more dominant than others, some researchers take the liberty of referring to
the dataset as bi-modal (multi-modal) even without an exact tie for the mode.

Grouped FD

In a grouped frequency distribution, the modal value is located in the class with highest
frequency and that class is the modal class. Its value is given by:

x̂ = Lx̂ +

[
fx̂ − fx̂−1

(fx̂ − fx̂−1) + (fx̂ − fx̂+1)

]
× w

where Lx̂ is the lower class boundary of the modal class, fx̂ is frequency of the modal class,
fx̂−1 is the frequency just before the modal class, fx̂+1 is the frequency just after the modal
class and w is the class width of the modal class.

Example 3.19. Find the modal score of the BMI frequency distribution constructed in
example 2.6.

Solution: The class having highest frequency is the 3rd class (23.25− 25.85), hence it is the
modal class.

x̂ = 23.25 +

[
17− 13

(17− 13) + (17− 15)

]
× 2.6 = 23.25 + 1.73 = 24.98

Note: Mode is applicable for both quantitative and qualitative variables. It is not affected
by extreme values. But, it often does not exist and its value may not be unique.

3.8 Relationship Between Mean, Median and Mode

In a symmetric bell-shaped (uni-modal) distribution; the mean, median and modal values are
approximately equal. Hence, the number of observations below and above the mean are equal.
In addition, the corresponding pairs of quartiles, deciles and percentiles are at equidistance
from the median. For example, first quartile and third quartile have the same distance from
the median.

In case of skewed distributions, median is a better measure of central tendency than the mean.
This is related to the fact that the mean can be highly influenced by an extreme value (outlier).

For example, in a positively skewed distribution, a few observations are extremely large, the
mean of the distribution becomes greater than the median and mode (mean > median >
mode). Therefore, the number of observations below the mean is greater than the number of
observations above the mean.
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In a negatively skewed distribution, there are a few extremely small observations, then the
mean will be the smallest of the other two averages (mean < median < mode). In this case,
the number of observations below the mean is less than the number of observations above the
mean.

Note: In a moderately skewed distribution, Mean - Mode = 3 ( Mean - Median).

Exercise 3.6. In a certain moderately skewed distribution, the mean is 74 and the mode is
60. What is the skewness type? Compute the median?

54

mailto:es.awol@gmail.com


Chapter 4

Measures of Variation

Let us consider the following three datasets, each with a sample of 12 observations. All the
three datasets have the same mean 6 and the same median 6. Are all the datasets the same?

A 1 2 3 4 5 6 6 7 8 9 10 11

B 4 5 5 5 6 6 6 6 7 7 7 8

C 6 6 6 6 6 6 6 6 6 6 6 6

But, by inspection, it is apparent that the observations in the three datasets differ remarkably
from one another.

Therefore, two or more datasets may have the same measures of central tendency but they
may be quite different. Thus, a measure of central tendency alone does not provide sufficient
information about the nature of the dataset. Thus, to have a clear picture of the character-
istics of the entire distribution, one needs to have a measure of variability among the values
of the variable, whether the values are clustered to each other or scattered away.

Variation or dispersion may be defined as the extent of scatteredness of the values of a vari-
able around a measure of central tendency. When the variation of a dataset is smaller, the
values of the variable are concentrated near a particular measure of central tendency, that
is, the values are more homogeneous. A dataset with a larger variation exhibits a greater
amount of heterogeneity among the values of the variable, that is, the values are scattered
away from a particular measure of central tendency. If all the values are the same, there is
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no variability and vice versa.

Thus, a measure of variation tells us the extent to which the values of a variable in a dataset
vary about a particular measure of central tendency. For example, the values in dataset A
above are more variable than the values in dataset B and C, the values in dataset B are also
more variable than the values in dataset C in which all the values are the same (no variation).

Note: Variability is encountered in all our everyday lives, and statistical thinking can give us
a useful way to incorporate this variability into our decision-making processes. By variability,
it means that successive observations of a system or phenomenon do not produce exactly the
same result or the values of the variable of interest are not the same for different objects.

• For example, consider the gasoline mileage performance of a car. Do we always get
exactly the same mileage performance on every tank of fuel? Of course not-in fact,
sometimes the mileage performance varies considerably. This observed variability in
gasoline mileage depends on many factors, such as the type of road mostly used, the
changes in condition of the vehicle over time (which could include factors such as tire
inflation, engine compression, or valve wear), the brand and/or octane number of the
gasoline used, or possibly even the weather conditions that have been recently experi-
enced. These factors represent potential sources of variability in the system.

• Similarly, consider the academic performance of students in statistics course. Do all the
students in a class score the same result? Of course not. The academic performance
varies from student to student. Like the previous one, this observed variability in the
students’ performance depends on many factors like gender, number of hours study-
ing per week, · · · . These factors represent potential sources of variability among the
students.

Therefore, statistics gives us a framework for describing such variability and for identifying
about which potential sources of variability are the most important or which have the greatest
impact on the variable of interest.

4.1 Objectives of Measures of Variation

1. To have an idea about the reliability of a measure of central tendency. If
the degree of scatterdness is large, a measure of central tendency is less reliable. If
the variation is smaller, it indicates that the measure of central tendency is a good
representative of all the values in a dataset.

2. To compare two or more datasets with regard to their variability. A dataset
with smaller variation posses more uniformity (consistency) among the values of a vari-
able or it is less variable.

3. To provide information about the structure of the observations in a dataset.
A measure of variation gives an idea about the limits of the expansion of the values of
a dataset.
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4.2 Types of Measures of Variation

There are two types of measures of variation: absolute and relative. A measure of variation is
said to be in an absolute form when it shows the actual amount of variation of the values of a
variable of a dataset in concrete units in which the data has been already expressed. In other
words, all absolute measures of variation have units. As a result, if two or more distributions
differ in their units of measurement, their variability cannot be compared by using an absolute
measure of variation. Also, the magnitude of the absolute measures of variation depends on
the magnitude of the observed values in a dataset. That is, if the magnitude of the values
is large in a dataset, the value of the absolute measures will also be large. Therefore, an
absolute measure of variation fails to be appropriate for comparing two or more datasets if
the magnitudes of the values among the datasets are too different.

A relative measure of variation shows the actual amount of variation of the observations in
a dataset in a unit-less pure number form. It also takes into account the differences in the
sizes of observed values between two or more datasets. Hence, it can be used for making
comparisons between different distributions.

Absolute Measures of Variation Relative Measures of Variation
Range Coefficient of Range
Inter-Quartile Range Coefficient of Inter-Quartile Range
Variance and Standard Deviation Coefficient of Variation

Standard Scores

Before giving the details of these measures of dispersion, it is worthwhile to point out that a
measure of variation (dispersion) is to be judged on the basis of all those properties of good
measures of central tendency. Hence, their repetition is superfluous.

4.2.1 Range

Range is the simplest and crudest measure of variation. It is defined as the difference between
the largest and the smallest values in a dataset. That is, R = L−S. Its corresponding relative
measure is called coefficient of range which is defined as CR = L−S

L+S .

Example 4.1. The hemoglobin level (in g/dl) of a sample of 13 apparently healthy men aged
20-24 years is given as: 17.5, 15.7, 15.8, 16.2, 15.5, 15.3, 17.4, 13.5, 18.8, 17.5, 15.8, 16.2, 14.3.
Find the range and coefficient of range of this dataset.

Solution: The ordered values are: 13.5, 14.3, 15.3, 15.5, 15.7, 15.8, 15.8, 16.2, 16.2, 17.4,
17.5, 17.5, 18.8. This implies R = 18.8− 13.5 = 5.3 and CR = 18.8−13.5

18.8+13.5 = 0.16.

Note: Range hardly satisfies any property of a good measure of dispersion as it is based on
the two extreme values only, ignoring the others.

4.2.2 Inter-Quartile Range

The inter-quartile range is the difference between the first (lower) and third (upper) quartiles,
that is, IQR = Q3 − Q1. Consequently, the relative measure of the inter-quartile range is
called coefficient of inter-quartile range and defined as CIQR = Q3−Q1

Q3+Q1
.
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Example 4.2. Find the inter-quartile range the hemoglobin data given in example 4.1.

Solution: First, let us find the lower and upper quartiles of the dataset.

• Q1 =
(

13+1
4

)th
value = 3.5th value = 15.3 + 0.5(15.5− 15.3) = 15.4.

• Q3 =
[

3(13+1)
4

]th
value = 10.5th value = 17.4 + 0.5(17.5− 17.4) = 17.45.

Thus, the inter-quartile range of the dataset is IQR = 17.45− 15.4 = 2.05 and the coefficient
of the inter-quartile range is CIQR = 17.45−15.4

17.45+15.4 = 0.06.

Note: Inter-quartile range involves only the middle 50% of the values by excluding the values
below the lower quartile and the values above the upper quartile. Note also that, it does not
take into account all the values between Q1 and Q3. It means that, no idea about the
variation of even the 50% mid values is available from this measure. Anyhow, it is a preferred
measure of variation when the median is used as a measure of center (i.e., in case of skewed
distribution) and is used to identify an outlier (extreme values) in a dataset.

• An observed value is said to be an outlier if it is less than Q1− 1.5(Q3−Q1) or greater
than Q3 + 1.5(Q3 −Q1).

• An observed value is said to be an extreme value if it is less than Q1 − 3(Q3 − Q1) or
greater than Q3 + 3(Q3 −Q1).

Example 4.3. The heart rates (beats per minute) for ten asthmatic patients in a state of
respiratory arrest are 167, 150, 125, 120, 150, 151, 40, 136, 120, 150. Are there any outliers
or extreme values in this dataset?

Solution: The ordered heart rates are 40, 120, 120, 125, 136, 150, 150, 150, 151, 167.

• Q1 =
(

10+1
4

)th
value = 2.75th value = 120 + 0.75(120− 120) = 120.00.

• Q3 =
[

3(10+1)
4

]th
value = 8.25th value = 150 + 0.25(151− 150) = 150.25.

For identifying outliers: [Q1 − 1.5(Q3 −Q1), Q3 + 1.5(Q3 −Q1)] = (74.625, 195.625) and for
identifying extreme values: [Q1 − 3(Q3 −Q1), Q3 + 3(Q3 −Q1)] = (29.25, 241.00). Therefore,
the observation 40 is an outlier in the above dataset but there is no extreme value.

The mean heart rate of the ten asthmatic patients is x̄ = 1
10(40+120+120+125+ · · ·+167) =

130.9 beats per minute. In this data set, the heart rate of one patient is considerably lower (it
is an outlier) than those of the other patients. What would happen if this observation were
removed? In this case, x̄ = 1

9(120 + 120 + 125 + · · · + 167) = 141.00 beats per minute. The
mean has increased by approximately 10 beats per minute; this change demonstrates how
much influence a single unusual (outlier) observation can have on the mean.

4.2.3 Variance

Variance is the most superior and widely used measure of variation. It is the sum of the
squares of the deviation of each value taken from the mean divided by the total number of
values in a dataset. Thus, it measures the average dispersion of the values of a variable around
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the mean. If the variance of a dataset is smaller, the values are concentrated near the mean
and if it larger, the values are scattered away from the mean.

For a population containing N values, the population variance is denoted by the square of
the Greek letter sigma, σ2. For a raw dataset, the population variance formula is:

σ2 =

N∑
i=1

(xi − µ)2

N
=

1

N


N∑
i=1

x2
i −

(
N∑
i=1

xi)
2

N


where µ is the population mean of the dataset.

For a sample of n values, the sample variance is denoted by s2 and calculated using the
formulae:

s2 =

n∑
i=1

(xi − x̄)2

n− 1
=

1

n− 1

 n∑
i=1

x2
i −

(
n∑
i=1

xi)
2

n


where x̄ is the sample mean of the dataset.

Example 4.4. Find the variance of 20, 28, 40, 12, 30, 15 and 50.

Solution:

• Considering as a population: N = 7, µ = 27.86;

σ2 =
1

N

N∑
i=1

(xi − µ)2 =
1

7
[(20− 27.86)2 + · · ·+ (50− 27.86)2] =

1

7
(1120.86) = 160.12

• Considering as a sample: n = 7, x̄ = 27.86;

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 =
1

6
[(20− 27.86)2 + · · ·+ (50− 27.86)2] =

1

6
(1120.86) = 186.81

Example 4.5. Re-calculate the population and sample variances of the dataset given in
example 4.4 using the expanded formula.

Solution: The summary statistics required to use the expanded formula of the variance are
7∑
i=1

xi = 20+28+40+12+30+15+50 = 195 and
7∑
i=1

x2
i = 202+282+402+122+302+152+502 =

6553. Thus, the population and sample variances, respectively, are:

σ2 =
1

7

[
6553− (195)2

7

]
= 160.12 and s2 =

1

6

[
6553− (195)2

7

]
= 186.81.

Note: The first main demerit of variance is that its unit is the square of the unit of measure-
ment of the observations in the dataset. For example, the sample variance for the observations
2m, 6m and 4m is 4m2. The interpretation seems, on average each value differs from the
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mean by 4m2. This is completely non-sense because the unit of measurement of the variance
is not the same as that of the dataset. The other disadvantage of variance is, the variation of
the data is exaggerated because the deviation of each value from the mean is squared. For the
given example, the variation of the data is exaggerated from two to four, since, it is taking
the square of the deviations. Variance also gives more weight the extreme values as compared
to those which are near to the mean value.

4.2.4 Standard Deviation

Standard deviation is the positive square root of variance. For a population containing N
elements, the population standard deviation is denoted by the Greek letter sigma, σ and its
formula is:

σ =
√
σ2 =

√√√√ 1

N

N∑
i=1

(xi − µ)2.

For a sample of n elements, the sample standard deviation is denoted by s and calculated
using the formulae:

s =
√
s2 =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2.

Example 4.6. Find the standard deviation of the dataset given in example 4.4.

Solution: The population standard deviation is σ =
√

160.12 = 12.65 and the sample stan-
dard deviation s =

√
186.81 = 13.67.

Note: Standard deviation is considered to be the best measure of variation because the unit
of measurement is the same as with the dataset and the exaggeration made by variance is
eliminated by taking the square root of it. Thus, in simple words, standard deviation ex-
plains the average amount of variation on either sides of the mean. If the standard deviation
is smaller, the values are concentrated near the mean and if it large, the values are scattered
away from the mean.

For a bell-shaped symmetric (called normal) distribution, empirical rule relates the standard
deviation (σ) to the proportion of the observed values in a dataset that lie in an interval
around the mean (µ):

• 68.2% of the values are within one standard deviation of the mean (µ± σ),

• 95.4% of the values are within two standard deviations of the mean (µ± 2σ), and

• 99.7% of the values are within three standard deviations of the mean (µ± 3σ).
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Properties of Variance and Standard Deviation

1. If a constant is added to (subtracted from) each value of a variable in a dataset, the
standard deviation as well as the variance remains the same.

2. If each value is multiplied by a nonzero constant c, the standard deviation is multiplied
by c and the variance is multiplied by c2.

Pooled Variance and Standard Deviation

If there are g groups having the same units of measurement with sample means x̄1, x̄2, · · · ,
x̄g; number of sample observations n1, n2, · · · , ng; and sample variances s2

1, s2
2, · · · , s2

g,
respectively, then the sample variance of all the g groups called pooled variance (denoted by
s2
p) is given by:

s2
p =

g∑
i=1

(ni − 1)[s2
i + (x̄i − x̄c)2]

g∑
i=1

ni − g
=

(n1 − 1)[s2
1 + (x̄1 − x̄c)2] + · · ·+ (ng − 1)[s2

g + (x̄g − x̄c)2]

n1 + n2 + · · ·+ ng − g

where x̄c is the combined (sample) mean of all the g groups. If all the sample means of the
groups are equal (x̄1 = x̄2 = · · · = x̄g), then the pooled sample variance formula becomes:

s2
p =

g∑
i=1

(ni − 1)s2
i

g∑
i=1

ni − g
=

(n1 − 1)s2
1 + (n2 − 1)s2

2 + · · ·+ (ng − 1)s2
g

n1 + n2 + · · ·+ ng − g

Similarly, the pooled population variance can be calculated using the formula:

σ2
p =

g∑
i=1

Ni[σ
2
i + (µi − µc)2]

g∑
i=1

Ni

=
N1[σ2

1 + (µ1 − µc)2] + · · ·+Ng[σ
2
g + (µg − µc)2]

N1 +N2 + · · ·+Ng
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where µc is the combined (population) mean of all the g groups. If µ1 = µ2 = · · · = µg, then
the pooled population variance formula becomes:

σ2
p =

g∑
i=1

Niσ
2
i

g∑
i=1

Ni

=
N1σ

2
1 +N2σ

2
2 + · · ·+Ngσ

2
g

N1 +N2 + · · ·+Ng

Exercise 4.1. The mean weight of 150 students is 60 kilograms. The mean weight of boys
is 70 kilograms with a standard deviation of 10 kilograms. For the girls, the mean weight
weight is 55 kilograms and the standard deviation 15 kilograms. Determine the number of
boys and girls. Also, find the combined standard deviation.

Exercise 4.2. A distribution consists of four groups characterized as follows. Find the mean
and standard deviation of the distribution. Ans: µc = 73.8 and σ = 11.93

Group Number of items Mean Standard deviation

1 50 61 8
2 100 70 9
3 120 50 10
4 30 83 11

Exercise 4.3. The arithmetic mean and standard deviation of a series of 20 items were
computed as 20 and 5 respectively. while calculating these, an item 13 was misread as 30.
Find the correct mean and standard deviation.

Example 4.7. The following data are some of the particulars of the distribution of weights
of boys and girls in a class. Find the mean and variance of the combined series.

Boys Girls

Number 100 50
Mean 60 45
Variance 9 4

If one of the values is misread as 60 instead of 40, what is the correct standard deviation.

4.2.5 Coefficient of Variation

Coefficient of variation is a relative measure of standard deviation. It measures how large
the standard deviation with respect to the mean. It is defined as the ratio of the standard
deviation to the mean and expressed as percent. That is, CV = σ

µ × 100% for a population
and CV = s

x̄ × 100% for a sample.

For example, if the sample mean of a dataset is 44 and the standard deviation is 8, then the
coefficient of variation is CV = ( 8

44)100% = 18.2%. It indicates that the sample standard
deviation is 18.2% of the value of the sample mean.

The coefficient of variation is a unit-less measure of variation and also takes into account the
size of the mean of a distribution. Hence, it is a useful measure for comparing the variability
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of variables that have different standard deviation and different means.

If a distribution has a smaller CV, then it has more consistent or more uniform or less
variable observations. For field experiments, a smaller CV also indicates more reliability of
experimental findings.

Example 4.8.

Given the following summaries on systolic blood pressure (SBP) and cholesterol level.

Variable Mean SD

SBP 130mmHg 25mmHg
Cholesterol 200mg/dl 30mg/dl

Which variable’s values is more variable/less consitent/less reliable?

Solution: As the standard deviation of systolic blood pressure (SBP) is 25 and cholesterol
is 30, it is not correct to say the values of SBP are less variable (more uniform) that of the
values of cholesterol. Hence, the appropriate measure of variability for these two different
types of variables is to obtain the coefficient of variation for each of the two variables and
compare both.

Variable Mean SD CV

SBP 130mmHg 25mmHg 19.23%
Cholesterol 200mg/dl 30mg/dl 15.00%

The values of cholesterol is more uniform/more consistent/more reliable than the values of
systolic blood pressure (SBP).

Exercise 4.4. Compare the variability of the following two sample datasets using standard
deviation and coefficient of variation:

A. 2 meters, 4 meters, 6 meters

B. 600 liters, 400 liters, 500 liters

Exercise 4.5. The average IQ of statistics students is 110 with standard deviation 5 and
the average IQ of mathematics students is 106 with standard deviation 4. Which class is less
variable in terms of IQ?

4.2.6 Standard (z) Score

The standard score (called z−score) is a measure relative standing. It measures how many
standard deviations a given value xi is above or below the mean depending on whether the
z−score is positive or negative. The formulas are z = x−µ

σ for a population and z = x−x̄
s for

a sample.

Example 4.9. Two public health experts from two different areas were assessed for the time
they have taken to accomplish a given task as presented in the table below.

Expert Actual time Mean SD

A 16hr 13hr 2hr
B 28min 20min 4min
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Who is better relative to his area?

Solution: The standard score of the two public health experts are calculated first.

Expert Actual time Mean SD z−score

A 16hr 13hr 2hr 1.5
B 28min 20min 4min 2.0

Since the z−score for expert A is less than the z−score for expert B, expert A performs better
(in a shorter time) relative to his area.

Exercise 4.6. Suppose Yoseph scored 90 on a test in which the mean and standard deviation
of the class were 70 and 10, respectively. In another test, Helen scored 600 on which the mean
and standard deviation of the class were 560 and 40, respectively. Who is better of relative
to his/her class?

Note: The standard score (z−score) is useful to transform a given data sets in to a new
distribution whose mean is 0 and variance is 1.

4.3 Skewness and Kurtosis

4.3.1 Measure of Skewness

Recall that skewness is the lack of symmetry. That is, if the tails of a frequency curve are
not equally distributed, the curve is asymmetric (skewed), see Section 2.4.2. The measure of
such degree of asymmetry is called a measure of skewness. It is denoted by α3 and given by
the formula:

α3 =
µ3√
(µ2)3

where µr =
1

N

N∑
i=1

(xi − µ)r; r = 2, 3.

If the distribution is symmetric, then α3 = 0. On the contrary, if α3 > 0, the distribution is
positively skewed and if α3 < 0, the distribution is negatively skewed.
Two distributions that have the same mean, variance, and skewness could still be significantly
different in their shape. We may then look at their kurtosis.

4.3.2 Measure of Kurtosis

Kurtosis refers to the peakedness or flatness of a certain distribution. It describes the degree
of concentration of the values of a variable around the mode of a distribution, whether the
values are concentrated more around the mode (a peaked curve) or scattered away from the
mode toward the tails of a frequency curve (a flatter curve).

Two or more distributions may have identical measures of central tendency and skewness,
but, they may show different degrees of peakedness. A distribution that is more picked is
called a leptokurtic distribution. In such distribution, most of the values are concentrated to
the mode and hence, the variance is the smaller.
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If a distribution is more flat toped, it is called platykurtic in which the observations are
scattered away from the modal value (the variance is now larger).

A distribution that is neither more peaked nor flat topped is called mesokurtic.

The moment measure of kurtosis is denoted by β and given by:

β =
µ4

(µ2)2
where µr =

1

N

N∑
i=1

(xi − µ)r; r = 2, 4.

If β = 3, the distribution is mesokurtic. If β > 3, the distribution is leptokurtic and if β < 3,
the distribution is platykurtic.
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Chapter 5

Elementary Probability

5.1 Deterministic and Nondeterministic Models

Upon attempting to tackle real life problems, mathematical models can be viewed as deter-
ministic and nondeterministic models.

• Deterministic Model: A deterministic model is a model which determines the exact
outcome of the activity, that is, it explains a condition with no variability. For example,
to know the BMI of an individual from his/her weight (in kg) W and height (in meter)
H, one can determine the BMI by BMI = W

H2 .

• Nondeterministic Model: A nondeterministic model is a model in which the con-
ditions of experimentation determine only the random behavior of the outcome. For
example, the number of defective light bulbs in a factory cannot be determined with
certainty. This model is also called probabilistic or stochastic model.

5.2 The Concept of Set Theory

As a general concept, probability is a quantitative measure of uncertainty on a scale of 0 (0%)
to 1 (100%). It measures of the chance that something will occur.

In order to discuss the detail theory of probability, it is essential to be familiar with some
ideas and concepts of set theory.

5.2.1 Definition of Set

A set is a collection of well-defined objects and denoted by capital letters like A, B, C, etc. If
set A consists of n objects a1, a2, · · · , an; it is written as A = {a1, a2, · · · , an}. Each object
’ai; i = 1, 2, · · · , n’ is called an element of set A and written as ai ∈ A. Hence, set A has n
elements, n(A) = n.

The number of elements in a set may be finite (the set is called a finite set) or infinite (the
set is called an infinite set). For example, a set consisting the numbers, say, 1, 2, 3 and 4; is
written as B = {1, 2, 3, 4} and it is finite. Similarly, a set consisting of the numbers between
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0 and 1 is written as C = {x : 0 ≤ x ≤ 1} and it is infinite.

A set consisting all possible elements under consideration is called a universal set (denoted
by U) and let n(U) = N for a finite number of elements. On the other hand, a set containing
no element is called an empty set (denoted by ∅ or {}). Here, n(∅)=0.

Now let us see the three basic and common set operations.

1. Complement Set (A′): The complement of a set A, denoted by A′, is a set consisting
all elements of U that are not in A, i.e., A′ = {x : x /∈ A}.

Note: ∅′ = U and U ′ = ∅.

2. Intersection Set (A∩B): A set consisting all common elements from two sets A and
B is called the intersection set or product of A and B, and written as A ∩ B. That is,
A ∩B = {x : x ∈ A and x ∈ B}.

Sets having no element in common are called mutually exclusive or disjoint sets. If A
and B are mutually exclusive, A ∩B = ∅ or n(A ∩B) = 0.

Note: A and A′ are mutually exclusive sets (A ∩ A′ = ∅), and also any set A and ∅
(A ∩ ∅ = ∅).
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3. Union Set (A ∪ B): A set consisting all elements from A or from B or from both is
called the union set or sum of A and B, and written as A ∪ B. That is, A ∪ B = {x :
x ∈ A, x ∈ B or x ∈ A ∩B}.

Note: A ∪A′ = U .

Properties of sets

• Commutative laws: A ∪B = B ∪A, A ∩B = B ∩A.

• Associative laws: A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C.

• Distributive laws: A ∪ (B ∩C) = (A ∪B) ∩ (A ∪C), A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C).

• Identity laws: A ∪A = A, A ∪ U = U , A ∪ ∅ = A, A ∩A = A, A ∩ U = A, A ∩ ∅ = ∅.

• De-Morgan’s laws: (A ∪B)′ = A′ ∩B′, (A ∩B)′ = A′ ∪B′.

Example 5.1. Let U = {a, b, c, d, e, 1, 2, 3}. Let A = {a, d, e}, B = {d, e, 2, 3} and C =
{a, d, c, e, 3}. Find A∪B, A∩B, A∩B′, A′∩B, (A∪B)′, (A∩B)′, A∩ (B∪C), A∪ (B∩C).

Example 5.2. Consider the universal set U = {x : x ≥ 0} and three sets A = {x : x ≤ 100},
B = {x : 50 ≤ x ≤ 200} and C = {x : x ≥ 150}. Find i) A∪B ii) A∩B iii) B∩C iv) (A∩B)′

Let A and B be finite sets. Then, n(A ∪ B) = n(A) + n(B) − n(A ∩ B). Also, n(A ∪ B) =
n(A) + n(B) if A and B are mutually exclusive.

Example 5.3. In a survey conducted among 200 statistics major students, the number of
students who visited historical, religious and both sites are found to be 150, 130 and 80
respectively. Find the number of students who visited none of the sites.

5.2.2 The Subset of a Set

If every element of set A is also an element of set B, A is said to be the subset of B and is
written as A ⊂ B. If A ⊂ B, then n(A) ≤ n(B).

• Every set is a subset of itself, i.e., A ⊂ A.

• Every set is a subset of a universal set, i.e., A ⊂ U .

• Empty set is a subset of every set, i.e., ∅ ⊂ A.

• Empty set is a subset of a universal set, i.e., ∅ ⊂ U .

Note A ⊂ B if and only if B′ ⊂ A′. Then, A ∪B = B and A ∩B = A. If A ⊂ B and B ⊂ A,
then A and B are said to be equal. If A ⊂ B and B ⊂ C, then A ⊂ C.
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5.3 Basic Probability Terms

1. Experiment: A probability experiment is an activity or a trial that leads to well-
defined results. But, it is uncertain to which result will occur. Hence, a probability
experiment is identified by two properties. First, each experiment has several (at least
two) possible results and all these results are known in advance and second, none of
these results can be predicted with certainty. For example, for the experiment of tossing
a coin, there are two possible results: head and tail. But, we cannot be certain whether
the result will be a head.

2. Outcome: An outcome is a result of a single trial (experiment). For the experiment of
tossing a coin, ’head’ is one possible outcome and ’tail’ is also another possible outcome.

3. Sample Space (S): Sample space is a collection of all possible outcomes of an experi-
ment. (In this context, S represents the universal set U described previously.)

Example 5.4. Describe all the outcomes for the following probability experiments and
also determine the total number of outcomes in the sample space.

(a) Tossing a coin: S={Head (H), Tail (T )}, n(S) = 2.

(b) Testing a patient for HIV: S={Positive, Negative}, n(S) = 2.

(c) Playing a football game: S={Win, Lose, Tie}, n(S) = 3.

(d) Tossing two coins: S = {HH,HT, TH, TT}, n(S) = 4.

(e) Rolling a die: S={1, 2, 3, 4, 5, 6}, n(S) = 6.

(f) Selecting an item from a production lot: S={Defective, Non-defective}, n(S) = 2.

(g) Introducing a new product into a market: S={Success, Failure}, n(S) = 2.

4. Event (E): An event is an outcome or a set of outcomes (of interest) of an experiment.
For example in the experiment of tossing two coins simultaneously if the event E is
defined as getting one head, then E = {HT, TH} and n(E) = 2. Similarly, E = {2, 4, 6}
is an event with n(E) = 3 defined for getting an even number in the experiment of rolling
a die.

Note:

• Since E ⊂ S {n(E) ≤ n(S)}, it follows that S and ∅ are also events.

• S is called certain (sure) event because every outcome is an element of S.

• The event ∅ is an impossible event because no outcome is an element of ∅.

• If n(S) = N and n(E) = n, then 0 ≤ n ≤ N .

5.4 Counting Techniques

Counting techniques are used to fix the size of a sample space that is extremely large. In
addition, they are used to determine the number of possible ways of arranging or selecting
different objects.
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1. Addition Rule: Suppose there are k procedures (p1, p2, · · · , pk), in which the ith

procedure can be done in ni; i = 1, 2, · · · , k ways. Hence, the total number of ways of
performing p1 or p2 or · · · or pk is n1 + n2 + · · ·+ nk, provided that no two procedures
can be performed at the same time or one after the other.

Example 5.5. There are 2 bus and 3 train routes from city X to city Z. In how many
ways can a person go from city X to city Z? Ans: 2 + 3 = 5 ways

2. Multiplication Rule: Suppose there are a sequence of k procedures, in which the ith

procedure has ni; i = 1, 2, · · · , k possibilities. Then, the total number of possibilities of
the whole sequence is n1 × n2 × · · · × nk.

Example 5.6. There are 2 bus routes from city X to city Y and 3 train routes from
city Y to city Z. In how many ways can a person go from city X to city Z? Ans: 2×3=6
ways

Example 5.7. Consider the following examples.

(a) There are 3 questions. Each question has 2 choices. How many answer keys must
be made? Ans: 2× 2× 2 = 23 = 8

(b) There are 5 patients in a clinic. If 4 doctors examine a different patient, in how
many ways can this be done? Ans: 5× 4× 3× 2 = 120

(c) In how many ways can 6 persons be sit in a row? Ans: 6× 5× 4× 3× 2× 1 = 720

(d) Seven dice are rolled. How many different outcomes are there? Ans: 6 × 6 × 6 ×
6× 6× 6× 6 = 67 = 279986

3. Permutation: Permutation is the arrangement or selection of objects in a specific
order.

(a) Permutation Rule 1: The number of permutations of n distinct objects taking
all together is n! = n× (n− 1)× (n− 2)× · · · × (1). By definition, 1! = 0! = 1.

Example 5.8. In how many ways can 6 persons be sit in a row? Ans: 6! = 720

Example 5.9. Suppose a photographer must arrange 4 persons in a row for a
photograph. In how many different ways can the arrangement be done? Ans:
4! = 24

(b) Permutation Rule 2: The arrangement of n distinct objects in a specific order
using r objects at a time is called a permutation of n objects taking r objects at a
time and written as nPr where

nPr =
n!

(n− r)!
, 0 < r ≤ n.

Example 5.10. In how many ways can 9 books be arranged on a shelf having 4
places? Ans: 9P4 = 9!

(9−4)! = 9× 8× 7× 6 = 3024

Example 5.11. How many 5 letter permutations can be formed from the letters
in the word ’DISCOVER’? Ans: 8P5 = 8!

(8−5)! = 8× 7× 6× 5× 4 = 6720
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(c) Permutation Rule 3: The number of permutations of n objects in which n1 are
alike, n2 are alike, · · · , nr are alike is given by

n!

n1!× n2!× · · · × nr!
where n1 + n2 + · · ·+ nr = n.

Example 5.12. How many different permutations can be made from the letters
in the word

a. STATISTICS. Ans: 10!
3!×3!×1!×2!×1!

b. MISSISSIPPI. Ans: 11!
1!×4!×4!×2!

c. EXERCISES. Ans: 9!
3!×1!×1!×1!×1!×2

4. Combination: Combination is the arrangement or selection of objects without regard
to order. Here, order does not matter.

• The number of combinations of n objects taking r objects at a time is denoted by
nCr =

(
n
r

)
where

nCr =

(
n

r

)
=

n!

(n− r)!× r!
; 0 < r ≤ n.

Exercise 5.1. In how many different ways can a secretary, a president and a manager be
selected from 5 persons?

Exercise 5.2. A committee of 3 persons is to be selected from 5 persons. In how many
different ways can this be done?

Exercise 5.3. There are 12 new GP applicants for a certain vacant position in a hospital.
How many different ways can the selection be done if there

1. is only one vacant position.

2. are two vacant positions.

3. are three vacant positions.

4. are ten vacant positions.

Exercise 5.4. A committee of 5 persons must be selected from 5 men and 8 women. How
many ways can the selection be done if there are

1. exactly 4 men in the committee?

2. at least 3 women in the committee?

5.5 Definitions of Probability

There are three common approaches for the definitions of probability: classical/mathematical,
empirical/frequentist and subjective/axiomatic approaches.
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5.5.1 Classical Probability

The classical definition uses sample space to determine the probability of an event. Suppose
there are N possible outcomes in the sample space S of an experiment. Of these, suppose,
only n are favorable to the event E, then the probability that event E will occur is:

P (E) =
n(E)

n(S)
=

n

N
.

Example 5.13. What is the probability of getting number 6 in rolling a die?

Solution: The sample space for the experiment of rolling a die is S = {1, 2, 3, 4, 5, 6}. Hence,
n(S) = 6. Let E = getting number 6 in rolling a die. Thus, E = {6} and n(E) = 1.

Therefore, P (E) = n(E)
n(S) = 1

6 .

Example 5.14. What is the probability of getting one head in tossing two coins?

Solution: The sample space for the experiment of two coins is S = {HH,HT, TH, TT}.
Hence, n(S) = 4. Let E = getting one head in tossing two coins. Thus, E = {HT, TH} and

n(E) = 2. Therefore, P (E) = n(E)
n(S) = 2

4 = 0.5.

Example 5.15. A die is rolled. What is the probability of getting

1. an odd number?

2. a number greater than 4?

Solution: The sample space for the experiment of rolling a die is S = {1, 2, 3, 4, 5, 6}. Hence,
n(S) = 6.

1. Let E = getting an odd number in rolling a die. Thus, E = {1, 3, 5} and n(E) = 3.

Therefore, P (E) = n(E)
n(S) = 3

6 = 0.5.

2. Let E = getting a number > 4 in rolling a die. Thus, E = {5, 6} and n(E) = 2.

Therefore, P (E) = n(E)
n(S) = 2

6 .

Example 5.16. An urn contains 7 white and 3 black balls.

1. If one ball is selected, what is the probability that the selected ball is black?

2. If two balls are selected, what is the probability that both balls are black?

Solution: There are 7W+3B=10 balls.

1. Let E = selecting a black ball from 10 balls. Thus, n(E) = 3. For selecting one ball,

there are a total of n(S) = 10 possibilities. Therefore, P (E) = n(E)
n(S) = 3

10 .

2. Let E = selecting two black balls from 10 balls. Thus, n(E) = 3C2. For selecting two

balls, there are a total of n(S) = 10C2 possibilities. Therefore, P (E) = n(E)
n(S) = 3C2

10C2
.

Example 5.17. An urn contains 6 white, 4 red and 9 black balls. If three balls are drawn
at random, what is the probability that:

1. 1 is of each color.
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2. 2 of the balls drawn are white.

3. none is red.

4. at least one is white.

Solution: The number of ways of selection of 3 balls of the total 19 is n(S) = 19C3.

1. Let E = selecting 1 ball of each color. Thus, n(E) = 6C14C19C1. Hence,

P (E) =
6C14C19C1

19C3
.

2. Let E = selecting 2 white balls. Thus, n(E) = 6C213C1. Hence,

P (E) =
6C213C1

19C3
.

3. Let E = selecting no red ball. Thus, n(E) = 4C015C3. Hence,

P (E) =
4C015C3

19C3
.

4. Let E = selecting at least one white ball. Thus, n(E) = 6C113C2 +6C213C1 +6C313C0.
Hence,

P (E) =
6C113C2 + 6C213C1 + 6C313C0

19C3
.

Example 5.18. A committee of 5 persons must be selected from 5 men and 8 women. What
is the probability that the committee consists of at least 3 women?

Solution: The number of ways of selecting 5 persons for the committee of the total 13 persons
is n(S) = 13C5. Let E be the event that the committee consists of at least three women.
Thus, n(E) = 8C35C2 + 8C45C1 + 8C55C0. Therefore,

P (E) =
8C35C2 + 8C45C1 + 8C55C0

13C5
.

Exercise 5.5. A family plans to have three children. Describe the sample space for all
possible gender combinations. What is the probability that the family will have two boys?

Exercise 5.6. Two dice are rolled. Describe the sample space. What is the probability of
getting i) a sum of 10 or more, ii) a pair which at least one number is 3, iii) a sum of 8, 9 or
10, iv) one number less than 4.

Note: The classical definition of probability is appropriate when all outcomes of an experi-
ment are equally likely. If there are N outcomes in the sample space S, then the probability
of each outcome is 1

N .
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5.5.2 Empirical Probability

The empirical probability is calculated based on a relative frequency. Given a frequency
distribution, the probability of an event being in a given class is:

P (E) =
f

n

where f is the class frequency and n =
k∑
i=1

fi is the total number of observations.

Example 5.19. Consider a study of waiting times in the X-ray department for a certain
hospital. A clerk recoded the number of patients waiting for service at 9:00 A.M. on 20
successive days and obtained the following discrete frequency distribution.

Number of patients waiting 0 1 2 3 4

Number of days 2 5 6 4 3

The frequency distribution shows that on 2 of the 20 days, 0 patients were waiting for service;
on 5 of the days, one patient was waiting for service; so on. Using a relative frequency,
the probability of no patient waiting for service is 2

20 = 0.10, the probability of one patient
waiting for service is 5

20 = 0.25, the probability of two patients waiting for service is 6
20 = 0.30,

the probability of three patients waiting for service is 4
20 = 0.20 and the probability of four

patients waiting for service is 3
20 = 0.15.

5.5.3 Subjective Probability

A subjective approach calculates probability based on an educated guess, experience or evalu-
ation of a problem. It expresses a person’s degree of belief for the occurrence of an event. For
example, a physician might say that on the basis of his/her diagnosis, there is a 30% chance a
patient will need an operation. When a patient presents with chest pains, a clinician may say
that the probability that the patient has heart disease is about 20%. Also, an epidemiologist
might say there is an 80% probability that an outbreak will occur in certain area.

A subjective probability is personal. Different people can be expected to assign different
probabilities for the same event of interest.

5.6 Probabilistic Rules and Notations

The probability of an event always lies in between 0 and 1, that is, 0 ≤ P (E) ≤ 1. If
P (E) = 0, then it is sure that E can never happen. On the other hand, if P (E) = 1, the
event E is certain to occur.

Example 5.20. In the experiment of rolling a die, the probability of getting number 9 is 0,
and the probability of getting a number less than 7 is 1. How?

The sum of the probabilities of each outcome, si; i = 1, 2, · · · , N , in a sample space S is 1,

that is,
N∑
i=1

p(si) = 1. For example, there are six outcomes in the experiment of rolling a die,

each with probability 1
6 .
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Outcome (si) 1 2 3 4 5 6

Probability {P (si)} 1
6

1
6

1
6

1
6

1
6

1
6

Therefore,
6∑
i=1

p(si) = 1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 = 6
6 = 1.

Example 5.21. Suppose that only three outcomes are possible in an experiment: a1, a2 and
a3. Suppose further more that a1 is twice as likely to occur as a2 which is four times as likely
to occur as a3. Find p1, p2 and p3.

Complement of an Event

The complement event of A consists of all outcomes that are not in A and it is denoted by
A′. It is the event that A does not occur.

If there are n outcomes in favor of an event A of the total N outcomes in S, then there will
be N − n outcomes against the event A (in favor of the complement event A′). Thus, the
probability of the complement event A′ is:

P (A′) =
n(A′)

n(S)
=
N − n
N

= 1− P (A).

Event, A′, occurs only when A does not occur. Therefore, P (A) + P (A′) = 1.

Example 5.22. The probability of a patient being HIV positive is 0.02. What is the proba-
bility of being negative?

Solution: P (HIV+) + P (HIV−) = 1. Thus, P (HIV−) = 1− P (HIV+) = 1− 0.02 = 0.98.

Intersection of Two Events

The intersection of events A and B (A ∩ B) is an event containing outcomes belonging to
both A and B.
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Therefore, P (A∩B) represents the probability that both events will occur at the same time,
and is calculated as:

P (A ∩B) =
n(A ∩B)

n(S)
.

Example 5.23. In an undergraduate class consisting of 30 girls and 20 boys, it is observed
that 4 girls and 6 boys wear eyeglasses because of vision problems. If a student is selected at
random, what is the probability that the student is

1. a girl and has a vision problem?

2. a boy and has a vision problem?

Solution:

1. Let G be a girl, V be a student with a vision problem. Hence, n(G∩V ) = 4 (4 students
are girls and have vision problem). Total number of students in the class is n(S) = 50.

Thus, P (G ∩ V ) = n(G∩V )
n(S) = 4

50 = 0.08 (8% of the students are girls and have vision

problem).

2. Let B be a boy, V be a student with a vision problem. Hence, n(B∩V ) = 6 (6 students
are boys and have vision problem). Total number of students in the class is n(S) = 50.

Thus, P (E) = n(B∩V )
n(S) = 6

50 = 0.12 (12% of the students are boys and have vision

problem).

Union of Two Events

If there are two events A and B, the union set of A and B (A∪B) is an event containing all
outcomes from A or from B or from both.

Therefore, P (A ∪ B) is the probability that at least one of the two events (either A or B
or both) will occur and is the sum of the probability that each event will occur minus the
probability that both events will occur at the same time. That is, P (A∪B) = P (A)+P (B)−
P (A∩B). Recall that n(A∪B) = n(A) +n(B)−n(A∩B). Thus, dividing both sides of this
equality by n(S) provides the probability.

Example 5.24. A patient is suspected to have two diseases: TB and HIV. The probability
that the patient will have TB is 0.60 and the probability of HIV is 0.70. The probability that
the patient will have both diseases is 0.50. Find the probability that the patient will have at
least one of the two diseases.

Solution: P (TB ∪ HIV) = P (TB) + P (HIV) − P (TB ∩ HIV) = 0.60 + 0.70 − 0.50 = 0.80.
Thus, 80% of the patients have at least one of the diseases (TB or HIV).
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Example 5.25. Recall example 5.23. If one student is selected randomly, what is the prob-
ability that the student is a girl or has a vision problem.

Solution: Let G be a girl student, V be a student with vision problem. Then, the required
is P (G ∪ V ) =?. P (G ∪ V ) = P (G) + P (V ) − P (G ∩ V ) = 30

50 + 10
50 −

4
50 = 36

50 = 0.72. The
probability that a student is a girl or has a vision problem is 72%.

Note: Consider events A and B. Let s be an outcome.

• If s ∈ A, then event A occurs. But, if s /∈ A, then event A does not occur.

• If s ∈ A ∩B, then A ∩B represents the event that both A and B occur.

• If s ∈ A∪B, then A∪B represents the event that A occurs, or B occurs or both occur.

• If s ∈ A ∩B′, then A ∩B′ represents the event that A occurs but B does not.

• If s ∈ A′ ∩B, then A′ ∩B represents the event that B occurs but A does not.

• If s ∈ A′ ∩ B′ = (A ∪ B)′, then A′ ∩ B′ = (A ∪ B)′ represents the event neither A nor
B occurs.

• If s ∈ (A ∩ B′) ∪ (A′ ∩ B), then (A ∩ B′) ∪ (A′ ∩ B) represents exactly only one of the
two events occurs.

• If s ∈ (A∩B)′ = A′ ∪B′, then (A∩B)′ = A′ ∪B′ represents the event that both events
do not occur.

Mutually Exclusive Events

Two events are said to be mutually exclusive if the events have no outcome in common. That
is, if A and B are mutually exclusive, then both events cannot occur simultaneously which
means the occurrence of one stops the occurrence of the other.

For example, in the experiment of rolling a die, odd numbers and even numbers cannot occur
at the same time. Hence, odd and even numbers are mutually exclusive events.

Tossing a coin also cannot result both a head and a tail simultaneously. Thus, head and tail
are also mutually exclusive outcomes.

In addition, weight of an individual cannot be classified simultaneously as ”underweight”,
”normal” and ”overweight”.
If event A and B are mutually exclusive, then A ∩ B = ∅. This implies P (A ∩ B) = 0 and
P (A ∪B) = P (A) + P (B).
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5.7 Marginal and Joint Probabilities

Consider again example 5.23. Let G = event a student is a girl, B = event a student is a
boy, V = event a student has a vision problem and V ′ = event a student has not a vision
problem. Then, the data can be presented in a 2× 2 table as:

Gender
Vision

Total
V V ′

Girls (G) n(G ∩ V ) = 4 n(G ∩ V ′) = 26 n(G) = 30
Boys (B) n(B ∩ V ) = 6 n(B ∩ V ′) = 14 n(B) = 20

Total n(V ) = 10 n(V ′) = 40 n(S) = 50

Dividing the frequencies by the total number of students, n(S) = 50, enables us to determine
the following probabilities:

Gender
Vision

Total
V V ′

Girls (G) P (G ∩ V )=0.08 P (G ∩ V ′)=0.52 P (G)=0.60
Boys (B) P (B ∩ V )=0.12 P (B ∩ V ′)=0.28 P (B)=0.40

Total P (V )=0.20 P (V ′)=0.80 1.00

For gender, girls G and boys B:

• P (G) = 30
50 = 0.60 is the probability that a randomly selected student is a girl (60% of

the students are girls).

• P (B) = 20
50 = 0.40 is the probability that a randomly selected student is a boy (40% of

the students are boys).

For vision problem, vision problem V and no vision problem V ′:

• P (V ) = 10
50 = 0.20 is the probability that a randomly selected student has a vision

problem (20% of the students have vision problem).

• P (V ′) = 40
50 = 0.80 is the probability that a randomly selected student has no vision

problem (80% of the students have no vision problem).

These values provide probabilities for gender and vision problem separately, and are called
marginal probabilities.

Also,

• P (G ∩ V ) = 4
50 = 0.08 is the probability that a randomly selected student is a girl and

has a vision problem.

• P (G∩ V ′) = 26
50 = 0.52 is the probability that a randomly selected student is a girl and

has no vision problem.

• P (B ∩ V ) = 6
50 = 0.12 is the probability that a randomly selected student is a boy and

has a vision problem.

• P (B ∩V ′) = 14
50 = 0.28 is the probability that a randomly selected student is a boy and

has no vision problem.

Because each of these values gives the probability of the intersection of two events, these
probabilities are called joint probabilities.
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5.8 Conditional Probability

5.8.1 Conditional Events

When the occurrence of an event affects the probability of occurrence of another event, the
two events are said to be conditional (dependent) events. If the events A and B are conditional
to each other, then the probability of event A occurring after event B has occurred is said to
be the conditional probability of A given B, and is written as

P (A|B) =
P (A ∩B)

P (B)
, P (B) > 0.

This implies, the probability that both events will occur is P (A ∩B) = P (B)P (A|B).

Similarly, the probability of event B occurring knowing that event A has already occurred is
said to be the conditional probability of B given A, and is written as

P (B|A) =
P (A ∩B)

P (A)
, P (A) > 0.

This implies, the probability that both events will occur is P (A ∩B) = P (A)P (B|A).

Therefore, P (A ∩ B) = P (B)P (A|B) = P (A)P (B|A). If A and B are mutually exclusive,
then P (A|B) = P (B|A) = 0.

Example 5.26. Recall example 5.24. Find P (TB|HIV) and P (HIV|TB).

Solution: Here P (TB|HIV) = 0.50
0.70 = 0.714. This means, of those persons who have HIV,

about 71% will have TB. And, P (HIV|TB) = 0.50
0.60 = 0.833. Thus, about 83% of those persons

who have TB will have also HIV.

Example 5.27. If the probability of a patient with chest pains having heart disease is 20%,
then what is the probability of a patient with chest pains not having heart disease?

Solution: Let P (HD|CP) = 20. Then, P (HD′|CP) = 1− P (HD|CP) = 1− 0.20 = 0.80

Example 5.28. Recall the 2× 2 table constructed from data given in example 5.23.

Gender
Vision

Total
V V ′

Girls (G) n(G ∩ V ) = 4 n(G ∩ V ′) = 26 n(G) = 30
Boys (B) n(B ∩ V ) = 6 n(B ∩ V ′) = 14 n(B) = 20

Total n(V ) = 10 n(V ′) = 40 n(S) = 50

Dividing the frequencies by the marginal total of girls and boys enables us to determine
two probabilities (one for girls and the other for boys). Because each of these values gives
the probability of vision problem given the gender of a student, the probabilities are called
conditional probabilities.

Gender
Vision

Total
V V ′

Girls (G) P (V |G)=0.13 P (V ′|G)=0.87 1.00
Boys (B) P (V |B)=0.30 P (V ′|B)=0.70 1.00
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For girls:

• P (V |G) = 4
30 = 0.13 is the probability that a randomly selected girl has a vision

problem. Or it is the (conditional) probability of having a vision problem if the student
is a girl (13% of the girls have vision problem).

• P (V ′|G) = 26
30 = 0.87 is the probability that a randomly selected girl has no vision

problem. Or it is the (conditional) probability of not having a vision problem if it is
known that the student is a girl (87% of the girls do not have vision problem).

For boys:

• P (V |B) = 6
20 = 0.30 is the probability that a randomly selected boy has a vision

problem. Or it is the (conditional) probability of having a vision problem if the student
is a boy (30% of the boys have vision problem).

• P (V ′|B) = 14
20 = 0.70 is the probability that a randomly selected boy has no vision

problem. Or it is the (conditional) probability of not having a vision problem if the
student is a boy (70% of the boys do not have a vision problem).

5.8.2 Total Probability Theorem

Suppose, a sample space is partitioned into k parts. The events B1, B2, · · · , Bk represent
partitions of a sample space S if

• B1 ∪B2 ∪ · · · ∪Bk = S,

• Bi ∩Bj = ∅,∀i 6= j = 1, 2, · · · , k and

• P (Bi) > 0, ∀i.

Let E be some event with respect to S and let B1, B2, · · · , Bk be partitions of S. Hence, E
may be written as E = (E ∩B1)∪ (E ∩B2)∪ · · · ∪ (E ∩Bk). This implies, the unconditional
probability of E as P (E) = P (E ∩B1) + P (E ∩B2) + · · ·+ P (E ∩Bk). Therefore,

P (E) = P (B1)P (E|B1) + P (B2)P (E|B2) + · · ·+ P (Bk)P (E|Bk)

=
k∑
i=1

P (Bi)P (E|Bi).

This is called total probability theorem.

Example 5.29. In a study of smoking and lung cancer, three groups of individuals (non-
smokers, former smokers and current smokers) are involved. The percentage of non-smokers,
former smokers and current smokers are 50%, 30% and 20%, respectively. Also, the percentage
of lung cancer in each group is 3%, 4% and 5%, respectively. If one of the study participants
becomes sick, what is the probability that s/he has the disease?

Solution: Let E be a person with lung cancer (an event consisting of lung cancer patients).
Let B1 be an event consisting of non-smokers, B2 be an event consisting of former smokers
and B3 be a set consisting of current smokers.
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The required probability is P (E):

P (E) = P (E ∩B1 ∪ E ∩B2 ∩ E ∩B3)

= P (E ∩B1) + P (E ∩B2) + P (E ∩B3)

= P (B1)P (E|B1) + P (B2)P (E|B2) + P (B3)P (E|B3)

= 0.50(0.03) + 0.30(0.04) + 0.20(0.05)

= 0.037

Therefore, the (unconditional) probability that the person, who was sick, has lung cancer is
3.7%.

Example 5.30. Among 100000 women with negative mammograms 20 will be diagnosed
with breast cancer within 2 years, whereas 1 woman in 10 with positive mammograms will be
diagnosed with breast cancer within 2 years. Suppose that 7% of the general population of
women will have a positive mammogram. What is the probability of developing breast cancer
over the next 2 years among women in the general population?

Solution: Let E be an event of breast cancer, P (E) =?. Let M be a positive mammogram
and hence, M ′ be a negative mammogram. Thus, P (M) = 0.07 and P (M ′) = 1 − P (M) =
0.93. Also, P (E|M) = 0.10 and P (E|M ′) = 0.0002.

Now the required probability is P (E):

P (E) = P (E ∩M) + P (E ∩M ′)
= P (M)P (E|M) + P (M ′)P (E|M ′)
= 0.07(0.10) + 0.93(0.0002)

= 0.0072

Therefore, the (unconditional) probability of developing breast cancer over the next 2 years
among women in the general population is 0.0072.

Exercise 5.7. A 5-year study of cataract in a population of 5000 people 60 years of age and
older is planned. It is known from census data that 45% of this population is 60-64 years of
age, 28% are 65-69 years of age, 20% are 70-74 years of age, and 7% are 75 or older. It is
also known that 2.4%, 4.6%, 8.8%, and 15.3% of the people in these respective age groups
will develop cataract over the next 5 years. What percentage of the population in the study
will develop cataract over the next 5 years, and how many people with cataract does this
percentage represent?

Solution: 5.2% of the population will develop cataract over the next 5 years, which represents
a total of 5000× 0.052 = 260 people with cataract.
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5.8.3 Bayes’ Theorem

Let B1, B2, · · · , Bk be partitions of a sample space S and let E be an event associated with
S. Then,

P (Bi|E) =
P (Bi ∩ E)

P (E)

=
P (Bi)P (E|Bi)
k∑
i=1

P (Bi)P (E|Bi)
; i = 1, 2, · · · , k.

This is called Bayes’ theorem.

Example 5.31. Recall example 5.29 about the distribution of lung cancer patients among
non-smokers, former smokers and current smokers. If the sick person is found to have the
disease, what is the probability that s/he is a current smoker?

Solution: Here, the required probability is P (B3|E):

P (B3|E) =
P (B3)P (E|B3)

P (E)
=

0.20(0.05)

0.037
= 0.27

Therefore, the probability that the sick person is a current smoker if s/he has lung cancer is
27%.

Example 5.32. Consider example 5.30. If a woman is diagnosed to have breast cancer, find
the probability that she has a positive mammogram?

Solution: Now the required probability is P (M |E):

P (M |E) =
P (M)P (E|M)

P (E)
=

0.07(0.10)

0.0072
= 0.9722

Thus, 97.22% of women have positive mammograms if they are diagnosed to have breast
cancer.

Screening Tests

There are two possible types of errors in a screening test: False Positive and False Negative.

Test
Disease

Total
D+ D−

T+ TP FP TP+FP
T− FN TN FN+TN

Total TP+FN FP+TN

• The sensitivity of a screening test is the probability that the test is positive given that
the person has a disease, P (T+|D+) = TP

TP+FN . A high sensitivity indicates there are a
few false negative results.
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• The specificity of a screening test is the probability that the test is negative given that
the person does not have a disease, P (T−|D−) = TN

FP+TN . A high specificity indicates
there are a few false positive results.

Example 5.33. Find the sensitivity and specificity of the mammography considered in ex-
ample 5.30.

Solution: The sensitivity of mammography is P (M |E) = P (M)P (E|M)
P (E) = 0.07(0.10)

0.0072 = 0.9722.

This means, 97.22% of women who have breast cancer will have positive mammograms.

Also, the specificity of the mammography is P (M ′|E′) = P (M ′∩E′)
P (E′) = P (M ′)P (E′|M ′)

P (E′) =
0.93(1−0.0002)

1−0.0072 = 0.9366. Of those women who do not have breast cancer, 93.66% will have
negative mammograms.

• The positive predictive value of a screening test is the probability that a person has a
disease given that the test is positive, PV + = P (D+|T+) = TP

TP+FP .

• The negative predictive value of a screening test is the probability that a person does
not have a disease given that the test is negative, PV − = P (D−|T−) = TN

FN+TN .

Example 5.34. Find the PV + and PV − of mammography considered in example 5.30.

Solution: The predictive value of a positive mammogram is PV + = P (E|M) = P (E∩M)
P (M) =

P (E)P (M |E)
P (M) = 0.0072(0.9722)

0.07 = 0.10. Thus, if the mammogram is positive, a woman has a 10%
chance of developing breast cancer over the next 2 years. The predictive value of a negative
mammogram is PV − = P (E′|M ′) = 1 − P (E|M ′) = 1 − 0.0002 = 0.9998. Now, if the
mammogram is negative, the woman is virtually certain not to develop breast cancer over the
next 2 years.

5.9 Independence

Two events are said to be independent if the occurrence of one does not affect the probability of
the occurrence of the other. If event A and B are independent, the probability of A occurring
is in no way affected by the occurrence of event B or vice versa, hence, P (A∩B) = P (A)P (B).

If the events A and B are independent, then P (A|B) = P (A), P (B) > 0 and P (B|A) = P (B),
P (A) > 0.

Example 5.35. A coin is tossed and a die is rolled. What is the probability of getting a
head on the coin or number 4 on the die?

Solution: Let A be a head on the coin, B be number 4 on the die. Thus, P (A) = 1
2 and

P (B) = 1
6 . Hence, P (A∪B) = P (A) +P (B)−P (A∩B). But, P (A∩B) = P (A)P (B) = 1

12 .
Therefore, P (A ∪B) = 7

12 .

Example 5.36. Suppose two doctors, A and B, test all patients coming into a clinic for
syphilis. Suppose doctor A diagnoses 15% of all patients as positive, doctor B diagnoses 20%
of all patients as positive, and both doctors diagnose only 3% of all patients as positive. Are
the two diagnosis results independent?
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Solution: P (A) = 0.15, P (B) = 0.20 and P (A∩B) = 0.03. Since P (A)·P (B) = 0.15(0.20) =
0.03 equals to P (A ∩B) = 0.03, the two diagnosis results are independent.

Example 5.37. Suppose a patient is referred for further lab tests if either doctor A or B
makes a positive diagnosis as given in example 5.36 above. What is the probability that a
patient will be referred for further lab tests?

Solution: P (A ∪B) = P (A) + P (B)− P (A ∩B) = 0.15 + 0.20− 0.03 = 0.32. Thus, 32% of
all patients will be referred for further lab tests.

Exercise 5.8. Let A and B be two events associated with an experiment. Suppose that
P (A) = 0.4, P (A ∪B) = 0.7 and P (B) = p.

1. For what choice of p, are A and B independent.

2. For what choice of p, are A and B mutually exclusive.
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Chapter 6

Probability Distributions

6.1 Random Variable

Random variable is a variable whose values are determined by chance (with some probability).
For example, number of females in a class of 30 students, number of patients coming to a
certain hospital in a day, weight (in kg) of newly born babies can be considered as random
variables.

Mostly, a random variable is denoted by capital letters, for example, Y and its value is denoted
by the corresponding small letter; yi. The set consisting of all possible values of a random
variable is called range space (RY ). For instance, the range space for the random variable
Y=number of females in a class of 30 students is RY = {0, 1, 2, · · · , 30}. Similarly, the range
space for the random variable Y=number of patients coming to a certain hospital in a day is
RY = {0, 1, 2, · · · }. Also, the range space for Y=weight (in kg) of newly born babies can be
written as RY = {y : 2.5 ≤ y ≤ 4.0}.

If the number of possible values of a random variable Y (that is, RY ) is finite or countable
infinite, the random variable is called discrete random variable. Hence, the possible values
of a discrete random variable Y may be listed as y1, y2, · · · , yn, · · · . In the finite case, the
list terminates and in the countably infinite case the list continues indefinitely. As a result,
the random variables ’number of females in a class of 30 students’ and ’number of patients
coming to a certain hospital in a day’ are examples of discrete random variables with finite
and countably infinite possible values, respectively.

On the other hand, if a random variable assumes an uncountable infinite number of possible
values (that is, RY is infinite), the random variable is called continuous random variable.
The random variable ’weight (in kg) of newly born babies’ could take an uncountable infinite
number of values between, say, 2.5kg and 4.0kg. Therefore, this random variable is an example
of continuous random variable.

6.2 Probability Distribution

A probability distribution describes how probabilities are distributed over the values of a
random variable. It consists of the values a random variable and their corresponding prob-
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abilities. Based on the type of a random variable, a probability distribution can be discrete
and continuous.

6.2.1 Discrete Probability Distribution

With each possible value yi of a discrete random variable, a number p(yi) = P (Y = yi), called
probability of yi, is associated. The numbers P (Y = yi) = p(yi), i = 1, 2, · · · must satisfy the
following conditions:

i. 0 ≤ P (Y = yi) ≤ 1; i = 1, 2, · · ·

ii.
∞∑
i=1

P (Y = yi) = 1

The function p is called probability mass function (pmf ) of a random variable Y .

yi y1 y2 · · · yn · · ·
P (Y = yi) p(y1) p(y2) · · · p(yn) · · ·

These collection of pairs [yi, p(yi)], i = 1, 2, · · · is also called discrete probability distribution
of Y .

Example 6.1. Construct a probability distribution for the number of girls to be born if a
family plans to have three children. Plot the probability distribution using bar chart.

Solution: First list all the possible values that Y can assume. Then, calculate the proba-
bility of each possible distinct value of Y and present it in the form of a discrete frequency
distribution.

The sample space for the possible gender combinations of three children to be born is S =
{BBB,BBG,BGB,BGG,GBB,GBG,GGB,GGG}. Let Y be the number of girls among
three children. As a result, RY = {0, 1, 2, 3}.

yi 0 1 2 3 Total

p(yi)
1
8

3
8

3
8

1
8 1

Example 6.2. A random variable Y assumes six values with probabilities shown in the
following probability distribution:

yi -2 -1 0 1 2 3 Total

p(yi) 0.05 0.35 0.15 0.20 0.15 0.10 1.00

Find P (−1 ≤ Y ≤ 2), P (−1 < Y < 2), P (Y > 1) and P (Y ≤ 1).

Solution:

• P (−1 ≤ Y ≤ 2) = P (Y = −1) + P (Y = 0) + P (Y = 1) + P (Y = 2) = 0.85

• P (−1 < Y < 2) = P (0 ≤ Y ≤ 1) = P (Y = 0) + P (Y = 1) = 0.35

• P (Y > 1) = P (Y ≥ 2) = P (Y = 2) + P (Y = 3) = 0.25
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• P (Y ≤ 1) = P (Y = −2) + P (Y = −1) + P (Y = 0) + P (Y = 1) = 0.75

Example 6.3. The instructor of a large class gives 15% each of A, 25% each of B, 35% each
of C, 20% each of D and 5% each of F. If a student is chosen at random from this class, the
student’s grade is a random variable Y with 5 possible values: RY ={A, B, C, D, F}.

1. Construct the probability distribution of Y ?

2. Draw a bar chart for the probability distribution of Y .

3. What is the probability that the student got B or better?

6.2.2 Continuous Probability Distribution

As continuous random variables differ from discrete random variables, consequently contin-
uous probability distributions differ from discrete ones. Since a continuous random variable
assumes any value in an interval [a, b], the graph of its corresponding continuous distribution
(equivalent of a bar chart for a discrete distribution) is usually a smooth frequency curve
described by a mathematical function, f(y), where a ≤ y ≤ b. The function f is called
probability density function (pdf ) if it satisfies the following two conditions:

i. f(y) ≥ 0 for a ≤ y ≤ b

ii.
b∫
a
f(y)dy = 1.

Remarks:

• The value of f(y) is not a probability at all; hence f(y) can take any nonnegative value
including values greater than 1.

• The total area under the pdf curve over the entire range of possible values of a continuous
random variable is 1.

Example 6.4. Show that f(y) =

{
1, 0 ≤ y ≤ 1;

0, otherwise
is a pdf.

Example 6.5. Show that f(y) =

{
2y, 0 ≤ y ≤ 1;

0, otherwise
is a pdf.

Note:

• The pdf f(y) of a continuous random variable does not give the probability P (Y = y).
This is because Y can take an infinite number of values and, therefore, it is not possible
to assign a probability for each value y. Therefore, the probability corresponding to
a single point is assumed to be zero, that is, P (Y = y) = 0 for all y. Consequently,
P (c ≤ Y ≤ d), P (c < Y ≤ d), P (c ≤ Y < d) and P (c < Y < d) are all equivalent,
which is certainly not true for discrete distributions.

• The area under the curve between any two points c and d equals to the probability that
the random variable Y assumes values between c and d. That is, P (c ≤ Y ≤ d) =∫ d
c f(y)dy, if a ≤ c ≤ d ≤ b.

Example 6.6. Find P (0 ≤ Y ≤ 0.25) using the pdf given in example 6.5.

Solution: P (0 ≤ Y ≤ 0.25) =
∫ 0.25

0 2ydy = y2|0.25
0 = (0.25)2 − 02 = 0.0625
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6.3 Expectations

6.3.1 Mean and Variance of a Random Variable

A probability distribution of a random variable has parameters describing its central tendency
and variability.

The mean, µ, of a random variable Y is known as the expected value of Y , denoted by E(Y ).
It is defined as:

E(Y ) = µ =


∞∑
i=1

yip(yi) if Y is a discrete random variable;

∞∫
−∞

yf(y)dy if Y is a continuous random variable.

The variance, σ2, of the random variable Y is the expected value of the square of the deviation
of Y from its mean.

V (Y ) = σ2 = E(Y − µ)2 =


∞∑
i=1

(yi − µ)2p(yi) if Y is a discrete random variable;

∞∫
−∞

(y − µ)2f(y)dy if Y is a continuous random variable.

Example 6.7. Find the expected number of girls to be observed for a family planning to
have three children. Also, calculate the variance and standard deviation.

Solution: Recall the probability distribution for number of girls is:

yi 0 1 2 3 Total

p(yi)
1
8

3
8

3
8

1
8 1

µ = E(Y ) =
4∑
i=1

yip(yi) = 0× 1
8 + 1× 3

8 + 2× 3
8 + 3× 1

8 = 1.5.

σ2 =
4∑
i=1

(yi−µ)2p(yi) = (0−1.5)2× 1
8 +(1−1.5)2× 3

8×+(2−1.5)2× 3
8 +(3−1.5)2× 1

8 = 0.75.

⇒ σ =
√

0.75 = 0.86.

6.3.2 Properties of Expectations

• If Y is a random variable and c is a non-zero constant, then

– E(c) = c and V (c) = 0

– E(Y ± c) = µ± c and V (Y ± c) = σ2

– E(cY ) = cµ and V (cY ) = c2σ2

• If X and Y are random variables, then

– E(X ± Y ) = E(X)± E(Y )

– E(X ± Y )2 = E(X2)± 2E(XY ) + E(Y 2)

Note: V (Y ) = σ2 = E(Y − µ)2 = E(Y 2)− [E(Y )]2.
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Example 6.8. Find the mean and variance of the pdf f(y) =

{
2y, 0 ≤ y ≤ 1;

0, otherwise.

Solution:

• The mean is E(Y ) =
∫ 1

0 yf(y)dy =
∫ 1

0 y(2y)dy =
∫ 1

0 2y2dy = 2
3y

3|10 = 2
3 .

• Similarly, E(Y 2) =
∫ 1

0 y
2f(y)dy =

∫ 1
0 y

2(2y)dy =
∫ 1

0 2y3dy = 1
2y

4|10 = 1
2 .

• Thus, the variance is σ2 = E(Y 2)− [E(Y )]2 = 1
2 −

4
9 = 1

18 .

6.4 Common Discrete Distributions

6.4.1 The Binomial Distribution

A binomial distribution is one of most frequently used discrete distribution that is very useful
in many practical situations involving only two types of outcomes; dead or alive, sick or well,
male or female. For example, if 72% of new born infants survive up to 70 years, then the
random variable Y represents the survival status of the infant at age of 70 years where Y = 1
with P (Y = 1) = 0.72 if the infant survives and Y = 0 with P (Y = 0) = 0.28 if infant does
not survive. Thus, the probability distribution of Y is:

y P (Y = y)

1 0.72
0 0.28

Total 1.00

This distribution is associated with an experiment called Bernoulli trial which exhibits the
following properties.

1. Each trial has only two mutually exclusive outcomes or outcomes that can be reduced
to two. One of the outcomes is labeled as success and the other is labeled as failure.

2. The outcome of each trial is independent. That is, the outcome of one trial does not
affect the outcome of another.

3. The trials are identical. That is, the probability of success, denoted by π, remains the
same from trial to trial. Consequently, the probability of failure, 1−π, does not change
from trial to trial.

4. The experiment is performed for fixed number of times, say n.

When the Bernoulli experiment is repeated for n independent and identical times, the ex-
periment is called Binomial experiment. In a Binomial experiment, the interest is in the
number of successes to be occurred in n Bernoulli trials. Let Y be the number of successes
to be occurred in n trials. Hence, RY = {0, 1, 2, · · · , n}. Because the range space is finite,
Y is a discrete random variable. The probability distribution associated with this random
variable is called Binomial probability distribution which is characterized by two parameters:

89

mailto:es.awol@gmail.com


Bio/Statistics- SPHM 5011 c© 2021 By: Awol S., E-mail: es.awol@gmail.com

the number of trials n (sample size) and probability of success π. Then, it is written as
Y ∼ Bin(n, π). As a result, the probability of obtaining y successes in n trials is given by:

P (Y = y) =

(
n

y

)
πy(1− π)n−y, y = 0, 1, 2, · · · , n

where n is number of trials, y is number of successes to be occurred in n trials, π is the
probability of success and 1− π is the probability of failure.

Notes:

1. The Binomial distribution is a legitimate discrete probability distribution:

(a) 0 ≤ P (Y = y) ≤ 1; y = 0, 1, 2, · · · , n.

(b)
n∑
y=0

P (Y = y) = 1.

2. The expected number of successes in n trials of a binomial random variable is µ = nπ
and its variance is σ2 = nπ(1− π). Note that the mean is greater than the variance.

Example 6.9. An investigator reveals that the probability that infants develop chronic bron-
chitis in the first year of life is 0.06 in which both parents have chronic bronchitis. A random
sample of 20 infants are selected from the same study area.

1. What is the probability there will be exactly 2 bronchitic infants?

2. What is the probability of getting no bronchitic infant?

3. What is the probability of getting at most 2 bronchitic infants?

4. What is the probability of getting at least 3 bronchitic infants?

5. What is the mean, variance and standard deviation of the number of bronchitic infants?

Solution: Let Y be the number of bronchitic infants among n = 20 infants. RY =
{0, 1, 2, · · · , 20}. Let π be the probability of an infant developing bronchitis in the first
year of life. Hence, Y ∼ Bin(n = 20, π = 0.06).

Thus, the probability of getting y bronchitic infants among 20 infants is given by:

P (Y = y) =

(
20

y

)
(0.06)y(0.94)20−y; y = 0, 1, 2, · · · , 20

1. The probability there will be exactly 2 bronchitic infants is P (Y = 2):

P (Y = 2) =

(
20

2

)
(0.06)2(0.94)20−2 =

(
20

2

)
(0.06)2(0.94)18 = 0.2246

2. The probability of getting no bronchitic infant is P (Y = 0):

P (Y = 0) =

(
20

0

)
(0.06)0(0.94)20−0 =

(
20

0

)
(0.06)0(0.94)20 = 0.2901

90

mailto:es.awol@gmail.com


Bio/Statistics- SPHM 5011 c© 2021 By: Awol S., E-mail: es.awol@gmail.com

3. The probability of getting at most 2 bronchitic infants is P (Y ≤ 2):

P (Y ≤ 2) = P (Y = 0) + P (Y = 1) + P (Y = 2)

=

(
20

0

)
(0.06)0(0.94)20 +

(
20

1

)
(0.06)1(0.96)19 +

(
20

2

)
(0.06)2(0.94)18

= 0.2901 + 0.3703 + 0.2246

= 0.8850

4. The probability of getting at least 3 bronchitic infants is P (Y ≥ 3):

P (Y ≥ 3) = P (Y = 3) + P (Y = 4) + P (Y = 5) + · · ·+ P (Y = 20)

= 1− P (Y < 3)

= 1− P (Y ≤ 2)

= 1− {P (Y = 0) + P (Y = 1) + P (Y = 2)}
= 1− (0.2901 + 0.3703 + 0.2246)

= 0.1150

5. The expected number of bronchitic infants among the 20 infants is µ = 20(0.06) = 1.2.
Also, the variance of the number of bronchitic infants is σ2 = 20(0.06)(0.94) = 1.128
and the standard deviation is σ = 1.062.

Example 6.10. In observing patients administered a new drug product in a properly con-
ducted clinical trial, the number of persons experiencing a particular side effect is 1 in 1000.
What is the probability that 4 of a random sample of 1000 patients experience a particular
side effect? What is the expected number of patients experiencing the side effect of the drug?

Solution: Let Y be the number of patients experiencing a particular side effect of the drug
among n = 1000 patients. RY = {0, 1, 2, · · · , 1000}. Hence, Y ∼ Bin(n = 1000, π = 0.001).
Thus, the probability that 4 of 1000 patients experiencing a particular side effect is:

P (Y = 4) =

(
1000

4

)
(0.001)4(1− 0.001)1000−4 =

(
1000

4

)
(0.001)4(1− 0.001)996 = 0.0153.

The expected number of patients experiencing the side effect of the drug is µ = nπ =
1000(0.001) = 1.

Exercise 6.1. What is the probability of 2 lymphocytes out of 10 white blood cells if the
probability that any one cell is a lymphocyte is 0.2? Also, find the expected number of
lymphocytes.

6.4.2 The Poisson Distribution

Poisson distribution is another theoretical discrete probability distribution, which is useful
for modeling the number of successes to be occurred independently and randomly in a certain
time, space, · · · . It differs from binomial distribution in the sense that it is not possible to
count the number of failures even though the number of successes is known. For example, in
the case of ’number of deaths from a particular disease per day’, only the number of patients
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who died in a given day is known but it is not possible to count the number of patients who
did not die in that day.

Accordingly, it is not possible to determine the number of trials (total number of outcomes -
successes and failures) and hence binomial distribution cannot be applied as a decision mak-
ing tool. In such situation, the poisson distribution should be used given the events occur
randomly and independently at a constant average rate of successes.

Other examples include number of patients coming to hospital for emergency treatment, num-
ber of telephone calls going to a switch board system, number of cars in a certain parking lot,
number of customers coming to a bank for service and so on.

Like a Binomial distribution, the interest in Poisson distribution is the number of successes to
be occurred in a specified unit of time or space. Let Y be the number of successes in a specific
unit of time or space. Hence, RY = {0, 1, 2, · · · }. Then, Y follows a poisson distribution with
a single parameter λ, average rate of successes (number of successes in a specified unit of time
or space), and it is written as Y ∼ Poisson(λ). Hence, the probability of getting y successes
in the same unit of time or space is:

P (Y = y) =
e−λλy

y!
, y = 0, 1, 2, · · ·

where λ is the average number of successes per unit of time or space. Here e = 2.71828.

Notes:

1. The poisson distribution is a legitimate discrete probability distribution:

(a) 0 ≤ P (Y = y) ≤ 1; y = 0, 1, 2, · · · .

(b)
∞∑
y=0

P (Y = y) = 1.

2. The expected number of successes in a specified unit of time or space is µ = λ and its
variance is σ2 = λ. Here, the mean and variance are equal.

3. The poisson random variable has no theoretical maximum value, but the probabilities
tail off towards zero very quickly.

Example 6.11. On average, there are 4.6 deaths from typhoid fever over a 1-year period.
Find the mean and variance of the number of deaths from typhoid fever. In addition, what
is the probability of

1. 2 deaths from typhoid fever over a 1-year period?

2. at least 1 death from typhoid fever over a 1-year period?

Solution: Let Y be the number of deaths from typhoid fever over a 1-year period. RY =
{0, 1, 2, · · · }. Let λ be the average number of deaths from typhoid fever over a 1-year period.
Hence, Y ∼ Poisson(λ = 4.6).
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Both the mean and variance of the number of deaths from typhoid fever in a 1-year period is
4.6. The probability of y deaths from typhoid fever over a 1-year period is given by:

P (Y = y) =
e−4.6 4.6y

y!
, y = 0, 1, 2, · · · .

1. The probability of 2 deaths from typhoid fever over a 1-year period:

P (Y = 2) =
e−4.6 4.62

2!
= 0.1063

2. The probability of at least 1 death from typhoid fever over a 1-year period:

P (Y ≥ 1) = P (Y = 1) + P (Y = 2) + · · ·
= 1− P (Y < 1)

= 1− P (Y = 0)

= 1− 0.0101

= 0.9899

Exercise 6.2. Suppose a hospital Accident and Emergency department has an average of
10 new emergency cases per hour. Calculate the probability of observing exactly 10 new
emergency cases in any given hour.

Poisson approximation to Binomial Distribution

Another important use of the poisson distribution is its approximation to the binomial dis-
tribution. Consider the binomial distribution for large number of trials (sample size) n and
small probability of success π. Recall the mean of the distribution is nπ and the variance is
nπ(1 − π). If the probability of success π is small, then the probability of failure 1 − π is
approximately 1. Thus, in this particular case, the mean and variance are almost equal (that
is, nπ(1− π) ≈ nπ) like the poisson distribution. Therefore, the binomial distribution with a
large number of trials n and small probability of success π can be approximated by a poisson
distribution with parameter λ = nπ.

Example 6.12. Consider again example 6.10. Using a poisson distribution approximation,
find the probability that 4 of a random sample of 1000 patients experience a particular side
effect of the drug?

Solution: Let Y be the number of patients experiencing a particular side effect of the drug
among n = 1000 patients. The expected number of patients experiencing the side effect of the
drug is λ = nπ = 1000(0.001) = 1. Hence, now Y ∼ Poisson(λ = 1). Thus, the probability
that 4 of 1000 patients experiencing a particular side effect is:

P (Y = 4) =
e−1 14

4!
= 0.0153.
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6.5 Common Continuous Distributions

6.5.1 The Normal Distribution

The most often used continuous probability distribution is the normal (also called gaussian)
distribution. This distribution plays a very important and pivotal role in the area of statistical
inference (estimation and hypothesis testing), which is the major topic of the remainder of
this lecture note.

The Normal Distribution Curve

The pdf of a continuous random variable Y with a normal distribution is given by:

f(y) =
1√
2πσ

e−
1
2( y−µσ )

2

, −∞ < y <∞

where µ is the mean and σ2 is the variance of the random variable. Hence, normal distribution
is determined by two parameters: mean µ and variance σ2, and it is written as Y ∼ N (µ, σ2).
Note the constants π = 3.14159 and e = 2.71828.

The curve of a normal distribution is symmetric and bell-shaped as shown in the following
figure.

Notes:

1. The normal distribution is a legitimate continuous probability distribution:

(a) f(y) ≥ 0 for −∞ < y <∞.

(b)
∞∫
−∞

f(y)dy = 1

2. E(Y ) = µ and V (Y ) = σ2.

Properties of Normal Distribution

Some of the interesting features of a normal distribution are:

1. The random variable Y can take on any value: negative, zero, or positive. That is
RY = {y : −∞ < y <∞}.
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2. The curve is symmetric at the mean, with the shape of the curve to the left of the mean
a mirror image of the shape of the curve to the right of the mean. In other words, that
the number of observations below the mean is the same as the number of observations
above the mean. This means the mean and median are equal.

3. The height of the curve is maximum at the mean. Thus, the mean and mode coincide.
This means the normal distribution has the same value for the mean, median and mode.

4. The curve declines and extends indefinitely in both directions from the mean to infinity.
But, theoretically, it never touches the horizontal axis.

5. The corresponding deciles, quartiles and percentiles are at equidistant from the mean.

Mean and Variance of a Normal Distribution

The pdf of a normal distribution describes a family of curves which may differ only with regard
to µ and σ2, but have the same characteristics. The two parameters, µ and σ2, determine the
location and peakedness of a normal distribution. The mean µ determines whether the curve
is located to the right or left side. Large values of the mean µ indicates the curve is located
to the right side and small values of the mean µ indicates the curve is located to the left. For
illustration, two normal distributions with the same variance but with different means are
presented below.

The variance (standard deviation) of a normal distribution also determines the flatness (wide-
ness) or peakedness (narrowness) of the curve. The variance σ2 (standard deviation σ) of a
normal distribution also determines the flatness or wideness of the curve. Larger value of the
variance σ2 result in a wider or flatter curve showing more variability. On the other hand,
smaller value of the variance σ2 result in a more picked curve showing more uniformity. Two
normal distributions with the same mean but with different variances are shown below.
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Finding probabilities in the Normal Distribution

The total area (representing maximum value for probability) under the pdf of a normal curve
over the entire range from −∞ to ∞ is 1. Also, since the curve is symmetric at the mean,
the area to the right and left of the mean is equal. Specifically, the area (probability) to the
left of the mean is 0.5 and the area (probability) to the right of the mean is 0.5. That is,
P (Y > µ) = P (Y < µ) = 0.5.

P (Y < µ) =

∫ µ

−∞

1√
2πσ

e−
1
2( y−µσ )

2

dy = 0.5 and P (Y > µ) =

∫ ∞
µ

1√
2πσ

e−
1
2( y−µσ )

2

dy = 0.5

In general, the area (probability) of Y between two values y1 and y2 is defined as:

P (y1 < Y < y2) =

∫ y2

y1

1√
2πσ

e−
1
2( y−µσ )

2

dy.

Empirical rule also relates the standard deviation (σ) of a normal distribution to the propor-
tion of observations around the mean (µ):

• About 68.2% of the observations are within 1 standard deviation of the mean (µ± σ),
that is, P (µ− σ < Y < µ+ σ) = 0.682.

• About 95.4% of the observations are within 1.96 (≈ 2) standard deviations of the mean
(µ± 2σ), that is, P (µ− 1.96σ < Y < µ+ 1.96σ) = 0.954.

• About 99.7% of the observations are within 2.58 (≈ 3) standard deviations of the mean
(µ± 3σ), that is, P (µ− 2.58σ < Y < µ+ 2.58σ) = 0.997.

Standard Normal Distribution

The pdf of a normal distribution to be integrated for evaluating probabilities is different for
different values of µ and σ2. Fortunately, a normal distribution can easily be standardized,
which allows to integrate a single function for any normal distribution.
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Suppose Y has a normal distribution with mean µ and variance σ2, i.e, Y ∼ N (µ, σ2). Then,
the Z score defined as Z = Y−µ

σ will have also a normal distribution with mean 0 and variance
1, that is, Z ∼ N (0, 1).

Such a random variable that has a normal distribution with mean µ = 0 and variance σ2 = 1
is called standard normal distribution. Hence, the pdf of the standard normal variate Z is
given by:

f(z) =
1√
2π
e−

1
2
z2 , −∞ < z <∞.

Notes:

1. The standard normal distribution is a legitimate continuous probability distribution:

(a) f(z) ≥ 0 for −∞ < z <∞.

(b)
∞∫
−∞

f(z)dz = 1

2. E(Z) = 0 and V (Z) = 1.

Finding probabilities, given the z−scores, in the Standard Normal Distribution

The total area (representing maximum value for probability) under the pdf of the standard
normal curve over the entire range from −∞ to ∞ is also 1. The area to the right and left of
the central value (µ = 0) is 0.5 (as it is symmetric about 0):

P (Z < 0) =

∫ 0

−∞

1√
2π
e−

1
2
z2dz = 0.5 and P (Z > 0) =

∫ ∞
0

1√
2π
e−

1
2
z2dz = 0.5

Similarly for any standard normal variate Z, the area (probability) between two values z1

and z2 is defined as:

P (z1 < Z < z2) =

∫ z2

z1

1√
2π
e−

1
2
z2dz.

However, manual integration and evaluation of the pdf of the (standard) normal distribution
is quite complicated. Rather, computer software is used for evaluating the corresponding
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probabilities, and a standard normal table is already tabulated.

The standard normal table to be used here provides probability values above a certain z−score
value, say z. That is, the provides the integrations of the standard normal distribution from

a positive number z to ∞, P (Z > z) =
∞∫
z
f(z)dz.

Because the standard normal curve is symmetric about zero, the probability that Z greater
than z is the same as the probability that Z less than −z. That is, P (Z > z) = P (Z < −z).
For example, P (Z > 1.55 = 0.0606) = P (Z < −1.55) as shown in the figure below.

In applied work, there are three types of probabilities that need to be determined:

1. P (Z > z, the probability that a standard normal random variable is greater than z,

2. P (Z < z), the probability that a standard normal random variable is less than z, and

3. P (z1 < Z < z2), the probability that a standard normal random variable is between
the values z1 and z2.

The first of these is determined from table to be provided. Because the area under the
curve is one, the second is given by P (Z < z) = 1 − P (Z > z). The third is given by
P (z1 < Z < z2) = P (Z > z1)− P (Z > z2).

Example 6.13. Find the area, of the standard normal distribution,

1. to the right of 1.96; P (Z > 1.96).

2. between 0 and 1.96; P (0 < Z < 1.96).

3. to the right of -2; P (Z > −2).

4. to the left of -0.5; P (Z < −0.5).

5. between -1 and 1.5; P (−1 < Z < 1.5).

Solution:

1. P (Z > 1.96) = 0.0250 = P (Z < −1.96)

2. P (0 < Z < 1.96) = P (Z > 0)− P (Z > 1.96) = 0.5− 0.0250 = 0.4750

3. P (Z > −2) = 1− P (Z < −2) = 1− P (Z > 2) = 1− 0.0228 = 0.9772

4. P (Z < −0.5) = P (Z > 0.5) = 0.3085

5. P (−1 < Z < 1.5) = 1− P (Z < −1)− P (Z > 1.5) = 1− 0.1587− 0.0668 = 0.7745
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Converting any Normal Distribution to Standard Normal Distribution

The general principle for converting any probability expression concerning normal random
variable, Y , of the form P (y1 < Y < y2) to an equivalent probability expression of the
standard normal random variable, Z, of the form P (z1 < Z < z2) is subtracting the population
mean µ from each boundary point of Y and dividing by the standard deviation σ. That is,

P (y1 < Y < y2) =

(
y1 − µ
σ

<
Y − µ
σ

<
y2 − µ
σ

)
= P (z1 < Z < z2)

Then, the standard normal table is then used to evaluate this latter probability.

Example 6.14. The IQ score of students is normally distributed with a mean of 120 and
variance 400. What is the probability that a student will have an IQ

1. above 140?

2. below 150?

3. between 100 and 130?

4. between 140 and 150?

Solution: Let Y be IQ score. Thus, Y ∼ N (120, 400).

P (y1 < Y < y2) = P

(
y1 − 120

20
< Z <

y2 − 120

20

)
1. P (Y > 140) = P

(
Z > 140−120

20

)
= P (Z > 1) = 0.1587

2. P (Y < 150) = P
(
Z < 150−120

20

)
= P (Z < 1.5) = 1− P (Z > 1.5) = 1− 0.0668 = 0.9332

3. P (100 < Y < 130) = P
(

100−120
20 < Z < 130−120

20

)
= P (−1 < Z < 0.5) = 1 − P (Z >

1)− P (Z > 0.5) = 1− 0.1587− 0.3085 = 0.5328

4. P (140 < Y < 150) = P
(

140−120
20 < Z < 150−120

20

)
= P (1 < Z < 1.5) = P (Z > 1) −

P (Z > 1.5) = 0.1587− 0.0668 = 0.0919

Finding z−scores, given the probabilities, in the Standard Normal Distribution

If the concern is to find the z−scores for given probability values, the zα notation is adopted.
According to this notation, zα is a value such that P (Z > zα) = α. For instance, P (Z >
1.55 = 0.0606) and hence z0.0606 = 1.55. Because of the symmetry of the (standard) normal
distribution, P (Z > zα) = P (Z < −zα) = α and P (−zα/2 < Z < zα/2) = 1− α.

Example 6.15. Find the z−score values of the following zα notations: z0.05, z0.01, z0.10,
z0.005, z0.025.

Solution: The value of zα is associated with P (Z > zα) = α.

1. z0.05 ⇒ P (Z > z0.05) = 0.05⇒ z0.05 ≈ 1.65.
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2. z0.01 ⇒ P (Z > z0.01) = 0.01⇒ z0.01 ≈ 2.33

3. z0.10 ⇒ P (Z > z0.10) = 0.10⇒ z0.10 ≈ 1.28

Example 6.16. Let Y be the variable representing the distribution of scores in biostatistics
course. It can be assumed that these scores are normally distributed with µ = 75 and σ = 10.
If the instructor wants no more than 10% of the class to get an A, what should be the cutoff
grade? That is, what is the value of y such that P (Y > y) = 0.10?

Solution: P (Y > y) = P (Z > z0.10) = P
(
Z > y−µ

σ

)
= P

(
Z > y−75

10

)
= 0.10

⇒ z0.10 =
y − 75

10
= 1.28⇒ y = 87.8.

Therefore, the instructor should assign an A grade to those students with scores 87.8 or
higher.

Normal approximation to Binomial Distribution

The binomial distribution is always symmetric when the probability of success is 50%, that
is, π = 0.50. For fixed number of trials (sample size) n, the distribution becomes skewed as
the probability of success π moves toward 0 (π < 0.50) or 1 (π > 0.50). Specifically, the
distribution is positively skewed when the probability of success is less than 50% (π < 0.5)
and it is negatively skewed when the probability of success is greater than 50% (π > 0.5).

For fixed probability of success π, it becomes symmetric as the sample size n increases.

When the sample size n is large, it can be approximated by a normal distribution with µ = nπ
and σ2 = nπ(1 − π). For a better normal approximation, a guideline is that the expected
number of both outcomes, expected number of successes nπ and expected number of failures
n(1 − π), should both be at least 5. For a probability of success π = 0.50, the sample size
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required is only n ≥ 10. For probability of success π = 0.10 (or π = 0.90), the sample size
required is at least 50 (n ≥ 50). When probability of success π far from 0.5 (π 6= 0.50), larger
samples are needed to attain normality.

Normal approximation to Poisson Distribution

In a poisson distribution, for small values of the average number of successes in a given time
or space λ, the distribution is positively skewed. But, for large values of the average rate of
successes, it becomes symmetrical.

Therefore, when the average rate of success is large (λ→∞), the poisson distribution can be
approximated by a normal distribution with mean µ = λ and variance σ2 = λ.

6.5.2 Other Continuous Distributions

The Student’s t Distribution

The t distribution is quite similar to the standard normal in that it is symmetric about 0 and
bell shaped. However, the curve of a t distribution is ”flatter” than the normal.

The t distribution has only one parameter called degrees of freedom(df ). The degrees of
freedom (df ) is the number of independent observations that are free to vary. Then the
distribution is written as t(df).
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The t values for given probability values is denoted by tα(df). The notation tα(df) is the value
of the t variable such that the area (probability) to the right is α.

Exercise 6.3. Find the following t values from the t distribution table: t0.05(5), t0.01(20),
t0.10(10).

Note: When the degrees of freedom is large, the t distribution is identical to the standard
normal distribution. That is, t(∞) ≈ Z where Z ∼ N (0, 1).

The Pearson χ2 Distribution

Chi-square (χ2) distribution is a non-negative positively skewed distribution. Like the t distri-
bution, it has only one parameter, degrees of freedom (df ), and it is usually denoted as χ2(df).

The chi-square values for given probability values is denoted by χ2
α(df). The notation χ2

α(df)
is the value of the chi-square variable such that the area (probability) to the right is α.

Exercise 6.4. Find the following chi-square values from the chi-square probability table:
χ2

0.05(5), χ2
0.01(20), χ2

0.10(10).

Note: The square of a standard normal variable is a χ2 distribution with 1 degrees of freedom.
That is, Z2 = χ2(1) where Z ∼ N (0, 1).
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The F Distribution

F distribution another non-negative and right skewed continuous distribution like the chi-
square distribution. It is the ratio of two chi-square distribution and hence, is identified by
a set of two degrees of freedom, the first called ”numerator degrees of freedom” v1 and the
second called ”denominator degrees of freedom” v2. It is written as F (v1, v2).

The F values for given probability values is denoted by Fα(v1, v2).

Exercise 6.5. Find the following F values from the F probability table: F0.05(5, 15), F0.01(20, 18),
F0.10(9, 9).

Notes:

• If the ”numerator degrees of freedom” is 1, the distribution is reduced to the square of
t distribution with v2 degrees of freedom. That is, F (1, v2) = t2(v2).

• If the ”denominator degrees of freedom” is large, the distribution is reduced to χ2

distribution with v1 degrees of freedom. That is, F (v1,∞) = χ2(v1).
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Chapter 7

Sampling and Sampling
Distributions

7.1 Census Vs Sample Survey

There are two broadly classified statistical investigations: census survey and sample survey.
In the census method, a 100% inspection of each unit of the population, known as sampling
unit, is made. The latter method is a study in which some elements which are assumed rep-
resentatives of the population are investigated. It is a statistical process in which we select
and examine a sample instead of considering the whole population.

In practice, it may not be possible to collect information on all units of the population. One
reason is lack of resources in terms of money, personnel and equipment. Another reason is
that sample survey enables us to obtain results on time. Hence, for getting quick results
sampling is preferred. Moreover, complete investigation may be destructive in nature. And
samples reduce the damages caused by some tests in quality control. For example, in cooking
food mothers check whether the food has enough amount of salt, spices, butter and so on,
by taking a small amount and testing it. What would happen if the test is all what is in the
dish?

7.2 Sampling Techniques

The process of selecting a sample from the population is known as sampling and the method
of selecting a sample is known as sampling technique. In the selection of a sample, always
the effort is to make the sample representative of the population. There several sampling
methods which can be broadly classified into two categories; probability and non-probability
sampling methods.

In probability sampling, each unit in the population has an equal chance of being included
in the sample. In the non-probability sampling, the units are drawn using ceratin amount of
judgement.
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7.2.1 Probability Sampling Techniques

1. Simple Random Sampling: In simple random sampling, each and every member of
the population has an equal and independent chance of being selected in the sample.
The items that get selected will be purely a matter of chance. Before applying this
method, a complete list of all members, called sampling frame, should be prepared so
that each member can be identified by a distinct number. There are two methods that
can be used in order to ensure the randomness of the selection. These are:

(a) Lottery Method: This method is useful in comparatively small size (mostly
N ≤ 100) of population. All members in the population are numbered uniquely
on separate pieces of paper of identical size and shape. These slips of paper are
then identically folded and mixed up in a container. The probability of the first
item being selected out of the total number of N slips of paper is 1

N , for the second
particular piece, this probability is 1

N−1 , since N − 1 slips of papers left in the
container after the first slip has been drawn. Similarly, the probability of the third
slip being picked up is 1

N−2 and so on. The items from the container are selected
successively until the desired sample size reached. This would constitute a random
sample called simple random sample.

(b) Random Number Table Method: A random number table is giving numbers
in a random order which are generated using computer. In the lottery method,
the selection may subject to human bias as people may identify the slips (chits)
in many ways. The inconvenience of preparing slips of paper, shuffling them and
choosing the items one by one may be avoided by the use of random number table.

Suppose N is a k digit number. Choose k digit numbers from the random number
table and read out the numbers continuously, vertically or horizontally. If the
number is greater than N but less than the biggest multiple of N which has k
figures, divide that number by N and take the remainder r and include the rth

unit in the sample. Discard random numbers which are greater than the biggest
multiple of N with k figures. For example, if N = 43 take 2 digit random numbers.
If the number is, say, 23 include the unit with number 23 in the sample. If the
second number is 68, since it is less than 86, the biggest 2 digit multiple of 43,
divide 68 by 43 and take the remainder, 25 and include the unit with number 25 in
the sample. If the number obtained is greater than 86, discard the number and go
to the next in the table. This process continues until n sampling units are selected.

2. Systematic Random Sampling: A systematic sample is formed by selecting the first
unit at random, and the remaining units in the sample are automatically selected in
some predetermined pattern. The process requires that the members of the population
be presented in some kind of order; alphabetically or numerically or in any other order,
and every kth unit (k = N

n is called sampling interval) is included in the sample after
the first item has been selected randomly. This may be considered representative as
the sample is evenly distributed over the whole population. There are two methods of
systematic sample selection. These are:

(a) Linear Systematic Sampling: Suppose N is a multiple of n, that is, N = nk.
The procedure is to select a random number, say, j such that 1 ≤ j ≤ k and then
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select the jth and every subsequent j + k, j + 2k, · · · , [(n− 1)k]th positional units.
This sampling plan is known as linear systematic sampling.

(b) Circular Systematic Sampling: In linear systematic sampling, the situation
that N is a multiple of n does not always hold, in such case a sample of n−1 units,
instead of n, will be obtained. As a result, circular systematic sampling is applied
when N 6= nk. Hence, take N

n as k by rounding to the nearest integer. Select a
random number from 1 to N , let the number be m. Now select every (m + jk)th

unit when m + jk < N and select every (m + jk − N)th unit when m + jk > N
putting j = 1, 2, · · · till n units are selected. By this method always a sample size
of n will be obtained.

3. Stratified Random Sampling: When the population is heterogenous with respect
to the characteristic in which one is interested, the population should be divided in
homogeneous groups, called strata (e.g., gender, region, · · · ). This ensures maximum
uniformity (homogeneity) within each stratum and largest degree of variability (hetero-
geneity) among strata. From each stratum, a separate sample is selected using simple
random sampling. This sampling method is known as stratified sampling. The total sam-
ple size might be allocated to each stratum equally (equal allocation) or proportionally
(proportional allocation).

4. Cluster Sampling: In this sampling technique, the population is divided into sub-
populations known as clusters. But, unlike a stratum, the units within a cluster are
relatively heterogenous. The number of clusters to be selected depends on how rep-
resentative each cluster is of the entire population. If all clusters are similar in this
regard, then sampling a small number of clusters will provide good estimates of the
population parameters. Then, from each cluster, a random sample of the desired size
will be selected.

5. Multistage Sampling: This method of sampling is useful when the population is very
large and widely spread. In a multistage sampling technique, the population is divided
into a number of successive stages. The sample size at each stage is determined by the
relative population size at each stage.

7.2.2 Non-probability Sampling Techniques

Nonprobability sampling gives rise to those methods where the units are selected deliberately.
No probability is attached or can be computed for an item being selected.

1. Quota Sampling: In case of stratified sampling if the cost of selecting sampling units
from each stratum is very high, then the investigator is assigned a quota (fixed number
of subjects) in each stratum. Then the actual selection of persons is left at the discretion
of the investigator.

2. Judgment Sampling: In this method, sampling units are selected on the judgement
of the person doing the study. The underlying assumption is that the unit selected truly
represent the entire population. For example to find out the potential of drip irrigation
technology, a researcher may go the teachers of an Agricultural University.
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3. Convenience Sampling: Here, an investigator selects the sample at his own conve-
nience. This method is based on the assumption that the population is homogeneous
and the individuals selected and interviewed similar information with regard to the
characteristic under study. For example, persons selected from gas stations or petrol
pumps to collect information about the quality of gas or petrol, service or correctness
of the measurement, e.t.c are supposed to represent the population of gasoline buyers.

4. Snowball Sampling: Snowball sampling technique involves the practice of identifying
set of respondents who can, in turn, help the investigator to identify some other person
who will be included in the study. After interviewing this person, s/he will contact the
other person and interview him/her. In this way, a chain process continuous till the
required number of persons are interviewed. This type of sampling is most suitable for
rare subjects, for example, a study involving commercial sex workers.

7.3 Errors In Surveys

1. Sampling Errors: Sampling errors are the errors which are introduced due to errors
in the selection of a sample or the discrepancies between population parameters and
estimates which are derived from random sample. That is, the absolute value of the
difference between a point estimate and the corresponding population parameter is
called sampling error. This error is due to sampling fluctuations which are the outcome
of the random sampling process. These errors can be controlled by proper choice of
sampling methods and increasing sample size.

2. Nonsampling Errors: It is experienced that studies based on complete enumeration
do not yield similar results in repeated enumerations. Such a discrepancy occurs due
to many errors which are termed as nonsampling errors. Some of the sources of such
errors are observation error or response error, measurement errors or errors in editing
and tabulation of data. These errors can be minimized through superior management
of survey, employing benefiting personnel and by using modern computational aids.

7.4 Concepts of Statistical Inference

The primary objective of a statistical analysis is drawing statistically valid conclusions about
the characteristics of the population based on the results obtained from sample. There are
two important terms that are key to statistical inference. These are population quantities
(parameters) and their sample counterparts (statistics. A parameter is a fixed (but usually
unknown) summary measure of the characteristic of a population. For example; population
mean (µ), population proportion (π), population rate λ, population variance (σ2), population
standard deviation (σ) are examples of parameters.

On the other hand, a statistic is a known summary measure of the characteristic of a sample.
For example; sample mean (ȳ), sample proportion (p), sample rate r, sample variance (s2),
sample standard deviation (s) are examples of statistics. These measures, unlike parameters,
are random because their values vary from sample to sample.
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Generally, statistical inference can be defined as the process of making conclusions for pop-
ulation parameters using sample statistics. It generally takes two forms, namely, estimation
of a parameter and testing of a hypothesis. Estimation is concerned with determining the
values of specific population parameters using sample data; hypothesis testing is concerned
with testing whether a particular value of a population parameter is plausible or not.

7.4.1 Estimation of Parameters

For the purpose of general discussion, let θ be a population parameter and θ̂ be the correspond-
ing statistic. The statistic θ̂ intended for estimating the parameter θ is called an estimator of
θ. A specific numerical value of an estimator calculated from the sample is called an estimate.
The process of obtaining an estimate of the unknown value of a parameter by a statistic is
called estimation. There are two types of estimations. One is point estimation and the other
is interval estimation.

Point Estimation

Point estimation is the process of obtaining a single sample value that is used to estimate
the desired population parameter. The estimator is known as point estimator. For example:

• Ȳ = 1
n

n∑
i=1

Yi is a point estimator of µ.

• P = 1
n

n∑
i=1

Yi is a point estimator of π.

• S2 = 1
n−1

n∑
i=1

(Yi − Ȳ )2 is a point estimator of σ2.

Properties of Point Estimators

The best estimator should be highly reliable and have desirable properties like unbiasedness,
consistency, efficiency and sufficiency. These criteria are described as follows:

1. Unbiasedness: An estimator is a random variable since it is always a function of the
sample values. A sample statistic is considered to be an unbiased estimator if its ex-
pected value equals the population parameter which is being estimated. This means if
E(θ̂) = θ, then θ̂ is an unbiased estimator of θ.

For example, Ȳ is an unbiased estimator of µ, P is an unbiased estimator of π and S2

is an unbiased estimator of σ2 (but S is a biased estimator of σ).

Also, S2
n = 1

n

n∑
i=1

(Yi − Ȳ )2 is a biased estimator of σ2 since E(S2
n) 6= σ2.

2. Consistency: Consistency refers to the effect of sample size on the accuracy of an
estimator. A statistic is said to be a consistent estimator of a population parameter if
it approaches the parameter as the sample size increases, that is, θ̂ → θ as n→ N .

For example, Ȳ is a consistent estimator of µ, P is also a consistent estimator of π.
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3. Efficiency: An estimator is considered to be efficient if its value remains stable from
sample to sample. The best estimator would be the one which would have the least
variance from sample to sample. From the three point estimators of central tendency,
namely, the mean, median and mode, the mean is considered the least variant and hence
is a better estimator for the population mean.

4. Sufficiency: An estimator is said to be sufficient if it uses all the information about
the population parameter contained in the sample. For example, the sample mean uses
all the sample values in its computation while median and mode do not. Hence, mean
is the better estimator in this sense.

Examples of point estimates:

• The proportion of smokers among patients having a respiratory problem is 0.72. The
sample proportion,, p = 0.72 is a point estimate of the population proportion, π, smokers
among patients having a respiratory problem.

• The mean SBP of patients under antihypertensive treatment in St. Paul’s Hospital is
120mmHg. The sample mean SBP of patients, x̄ = 120mmHg, is a point estimate of
the population mean µ.

• The current prevalence of HIV in Addis Ababa is 25%. Here, the sample prevalence
p = 0.25 estimates the population prevalence of HIV in Addis Ababa, π.

Interval Estimation

Point estimator has some drawbacks. First, a point estimator may not exactly locate a popu-
lation parameter, that is, the value of a point estimator is not likely to be equal to the value
of a parameter, resulting in some margin of uncertainty. If the sample value is different from
the population value, the point estimator does not indicate the extent of the possible error.
Second, a point estimate does not specify as to how confident we can be that the estimate is
close to the parameter it is estimating. That is, we cannot attach any degree of confidence to
such an estimate as to what extent it is closer to the value of a parameter. Because of these
limitations of point estimation, interval estimation is considered desirable. Interval estima-
tion involves the determination of an interval (a range of plausible values) on both sides of a
point estimate within which a population parameter is assumed to lie with a specified degree
of confidence. Therefore, an interval estimate of a parameter is of the form: (lower bound,
upper bound).

Examples of interval estimates:

• The proportion of smokers among patients having a respiratory problem is in between
0.67 and 0.77, 0.67 < π < 0.77.

• The mean SBP of patients under antihypertensive treatment in St. Paul’s Hospital is
between 110mmHg and 130mmHg, 110mmHg < µ < 130mmHg.

• The current prevalence of HIV in Addis Ababa is between 21% and 29%, 0.21 < π <
0.29.
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7.5 Sampling Distributions

As said before, sample statistics are known values but vary from sample to sample taken from
the same population. This variability of sample statistics is always present and must be ac-
counted for in any inferential procedure. In fact, a sample statistic is a random variable and,
like any other random variable, it has a probability distribution. The probability distribution
of a statistic is called sampling distribution. Therefore, the sampling variation of a statistics
is accounted for by identifying its probability distributions.

The expected value (mean) of the sampling distribution of a statistic is the population pa-
rameter corresponding to that statistic and the measure of variability of sample statistics is
the variance. The positive square root of the variance of a statistic is called standard error
(SE) which is the standard deviation of the distribution of the sample mean.

7.5.1 Sampling Distribution of the Sample Mean

The sampling distribution of Ȳ is the probability distribution of all possible values of the
sample mean ȳ. The idea is that if a number of repeated samples of fixed size n is drawn
from population having a mean µ and variance σ2, each sample mean ȳ will have a different
value. Thus, Ȳ itself is a random variable and hence it has a probability distribution.

For example, suppose there are N = 5 patients in a population labeled alphabetically A, B,
C, D, and E. If a random sample of n = 2 patients is decided to be selected, then there are
5C2 = 10 possible samples of size n = 2:

Number 1 2 3 4 5 6 7 8 9 10

Sample (A,B) (A,C) (A,D) (A,E) (B,C) (B,D) (B,E) (C,D) (C,E) (D,E)

Note here that each possible sample has an equal probability of 1
10 . A sample of size n selected

from a population containing N sampling units (n < N) is said to be a random sample if
every different sample of size n from the population has an equal probability of being selected.

Let the observed values representing a certain characteristic of the five patients be {2, 3, 4,

5, 6}. Then, the population mean is µ = 1
N

N∑
i=1

yi = 1
5

5∑
i=1

yi = 4 and the population standard

deviation is σ = 1.58.

Now let us find the sample means for all the ten possible samples:

Sample (A,B) (A,C) (A,D) (A,E) (B,C) (B,D) (B,E) (C,D) (C,E) (D,E)

ȳ 2.5 3 3.5 4 3.5 4 4.5 4.5 5 5.5

Thus, the sampling distribution of the sample mean is:

ȳ 2.5 3 3.5 4 4.5 5 5.5

p(ȳ) 1
10

1
10

2
10

2
10

2
10

1
10

1
10

Clearly, the sample mean takes different values, the smallest value is 2.5 and the largest is
5.5, with different probabilities.
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Expected Value of the Sample Mean Ȳ

Let us consider the above example again. The expected value of the sample mean can be calcu-

lated from the sampling distribution as: E(Ȳ ) = µȲ =
10∑
i=1

ȳp(ȳ) = 2.5× 1
10 +3× 1

10 +3.5× 2
10 +

4× 2
10 +4.5× 2

10 +5× 1
10 +5.5× 1

10 = 4. This value is exactly equal to the population mean µ = 4.

In general, assume a population with mean µ and variance σ2. If a simple random sample

of size n (Y1, Y2, · · · , Yn) is selected from the population, the sample mean is Ȳ = 1
n

n∑
i=1

Yi.

Then, E(Ȳ ) = E( 1
n

n∑
i=1

Yi) = 1
n

n∑
i=1

E(Yi) = 1
n

n∑
i=1

µ = µ. The mean of the distribution of the

sample mean is equal to the population mean µ. That is, E(Ȳ ) = µ. Therefore, Ȳ is an
unbiased estimator of µ.

Standard Error of the Sample Mean Ȳ

Standard error of the mean is the measure of variability of sample means, that is, the stan-
dard deviation of the distribution of the sample mean. In general, a standard error is the
standard deviation of the sampling distribution of an estimator.

Let us consider the above example once more. The variance of the sampling distribution of
the sample mean is:

E(Ȳ − µȲ )2 = σ2
Ȳ

=
10∑
i=1

(ȳ − µȲ )2p(ȳ) = (2.5− 4)2 × 1
10 + · · ·+ (5.5− 4)2 × 1

10 = 0.555.

This implies, the standard deviation of the sample mean is σȲ = 0.745. This value is the
ratio of the population standard deviation to the square root of sample size,???.

Assuming a population with mean µ and variance σ2, the variance of the sample mean Ȳ is:

V (Ȳ ) = σ2
Ȳ = V (

1

n

n∑
i=1

Yi) =
1

n2

n∑
i=1

V (Yi) =
1

n2

n∑
i=1

σ2 =
1

n
σ2.

Thus, the standard error of the sample mean Ȳ is the positive square root of its variance and
denoted as SE(Ȳ ) = σȲ = σ/

√
n. Therefore, the standard error of the distribution of the

sample mean is equal to the standard deviation of the population divided by the square root
of the sample size.

In reality the population standard deviation σ is unknown, hence the sample standard devia-
tion s is used in place of σ. This provides the estimated standard error of the mean, that is,
ŜE(Ȳ ) = σ̂Ȳ = s/

√
n.

If the sample size increases, the standard error of the sample mean Ȳ decreases. Thus, Ȳ is
a consistent estimator of the population mean µ.

7.5.2 Sampling Distribution of the Sample Proportion

Consider the number of successes to be occurred in n binomial experiments with probability
of success π. If a random sample of size n (Y1, Y2, · · · , Yn) is selected from the population,
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then the mean and variance of the number of successes Yi are π and π(1 − π), respectively.
The sample proportion of successes P is also the ratio of the sum of the observed number of

successes Yi to the total number of outcomes n, that is, P = 1
n

n∑
i=1

Yi.

Expected Value of the Sample Proportion P

The expected value (mean) of the sampling distribution of the sample proportion P is:

E(P ) = µP = E(
1

n

n∑
i=1

Yi) =
1

n

n∑
i=1

E(Yi) =
1

n
nπ = π

This shows that the mean of all possible the sample proportion P values is the same as the
population proportion π. That is, E(P ) = π. Thus, the sample proportion P is an unbiased
estimator of the population proportion π.

Standard Error of the Sample Proportion P

The variance of the sampling distribution of the sample proportion P is:

V (P ) = σ2
P = V (

1

n

n∑
i=1

Yi) =
1

n2

n∑
i=1

V (Yi) =
1

n2
nπ(1− π) = π(1− π)/n.

Thus, the standard error of P is SE(P ) = σP =
√
π(1− π)/n. This provides the estimated

standard error of the proportion as ŜE(P ) = σ̂P =
√
p(1− p)/n.

Since the standard error of P decreases to zero when the sample size increases, the sample
proportion P is a consistent estimator of the population proportion π.

7.5.3 Central Limit Theorem

If random samples of size n are taken from any distribution with mean µ and variance σ2,
the sample mean Ȳ will have approximately a normal distribution with mean µ and variance
σ2/n for large sample size n. This is the most celebrated theorem called central limit theorem.
When the population distribution is normal, the sampling distribution of Ȳ is exactly normal
for any sample size n.

Remarks:

• Suppose the sample mean Ȳ has a normal distribution with mean µ and variance σ2/n
{Ȳ ∼ N (µ, σ2/n)}.

– If the population variance σ2 (standard deviation σ) is known, then the Z−score
of the sample mean will have a standard normal distribution. That is,

Z =
Ȳ − µ
σ/
√
n
∼ N (0, 1).

112

mailto:es.awol@gmail.com


Bio/Statistics- SPHM 5011 c© 2021 By: Awol S., E-mail: es.awol@gmail.com

– If the population standard deviation σ is unknown, it can be approximated by
the sample standard deviation s. Then, as long as the sample size n is large, the
z−score, based on the estimated standard error, of the sample mean will also have
a standard normal distribution. That is:

Z =
Ȳ − µ
s/
√
n
∼ N (0, 1).

Example 7.1. A person visits his/her doctor with concerns about his/her blood pres-
sure. If the systolic blood pressure exceeds 150, the patient is considered to have high
blood pressure and medication may be prescribed. A patient’s blood pressure readings
often have a considerable variation during a given day. Suppose a patient’s systolic
blood pressure readings during a given day have a normal distribution with a mean
µ = 160 mmHg and a standard deviation σ = 20 mmHg.

1. What is the probability that a single blood pressure measurement will fail to detect
that the patient has high blood pressure?

2. If five blood pressure measurements are taken at various times during the day,
what is the probability that the average of the five measurements will be less than
150 and hence fail to indicate that the patient has high blood pressure?

3. How many measurements would be required in a given day so that there is at most
1% probability of failing to detect that the patient has high blood pressure?

Solutions: Let Y be the blood pressure measurement of the patient. Thus, Y ∼
N (160, 400).

1. P (Y < 150) = P (Z < y−µ
σ ) = P (Z < 150−160

40 ) = P (Z < −0.5) = 0.3085. Thus,
there is over about a 31% chance of failing to detect that the patient has high
blood pressure if only a single measurement is taken.

2. Since Ȳ ∼ N (µ, σ2/n), Ȳ ∼ N (160, 80). P (Ȳ < 150) = P (Z < Ȳ−µ
σ/
√
n

) = P (Z <
150−160

8.944 ) = P (Z < −1.12) = 0.1314. Therefore, by using the average of five
measurements, the chance of failing to detect the patient has high blood pressure
has been reduced from over 31% to about 13%.

3. Given P (Ȳ < 150) = 0.01. Thus P (Z < 150−160
40/
√
n

) = 0.01 This implies 150−160
40/
√
n

=

−2.33. Solving for n, yields n = 21.64. It would require at least 22 measurements
in order to achieve the goal of at most a 1% chance of failing to detect high blood
pressure.

• If the number of successes Y has a binomial distribution with number of trials n and
probability of success π {Y ∼ Bin(nπ, nπ(1 − π))}, then the sample proportion of
successes P will also have a normal distribution with mean π and variance π(1− π)/n,
{P ∼ N (π, π(1− π)/n)}.

– If the population proportion π is known, then the z−score of the sample proportion
will have a standard normal distribution. That is,

Z =
P − π√
π(1− π)/n

∼ N (0, 1).
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– If the population proportion π is unknown, it can be approximated by the sample
proportion p. Then, as long as the sample size n is large, the z−score, based on
the estimated standard error, of the sample proportion will also have a standard
normal distribution. That is:

Z =
P − π√
p(1− p)/n

∼ N (0, 1).

The t Distribution

The t distribution describes the distribution of a normally distributed random variable for
small sample size. Then, if σ is unknown and the sample size is small, then the standardized
sample mean will have a t distribution with n− 1 degrees of freedom:

T =
Ȳ − µ
s/
√
n
∼ t(n− 1).

Similarly for the sample proportion, if π is unknown and the sample size is small , then the
sample proportion will have a t distribution with n− 1 degrees of freedom:

T =
P − π√
p(1− p)/n

∼ t(n− 1).

The χ2 Distribution

The χ2 describes the distribution of the sample variance.

The F Distribution

F distribution describes the distribution of the ratio of two variances.

7.5.4 Hypothesis Testing

A statistical hypothesis is an assumption (a conjecture) about a population parameter. Ex-
amples:

• Is the proportion of smokers among patients having a respiratory problem 0.72? Is
π = 0.72?

• Is the mean SBP of patients under antihypertensive treatment in St. Paul’s Hospital
120mmHg? Is µ = 120mmHg?

• Is the current prevalence of HIV in Addis Ababa 25%? Is π = 0.25?

Such an assumption usually results from speculation concerning observed behavior, natural
phenomena, or established theory. Hence, hypothesis testing is a statistical procedure that
leads to take a decision about a statistical hypothesis for being supported or not by the sample
data.
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Statistical Hypothesis

A statistical hypothesis testing starts by making a set of two mutually-exclusive and exhaus-
tive hypotheses about the parameter(s) in question. The first hypothesis is called a null
hypothesis (denoted by H0) which states there is no difference between a parameter and a
hypothesized value. This hypothesis always states there is no difference, no effect, no impact,
or no association. In other words, the statement under H0 is similar to the notion of innocent
until proven guilty. For any parameter θ and an assumed value θ0, the null hypothesis is
written as H0 : θ = θ0.

The second hypothesis, is called an alternative hypothesis (denoted by H1), contradicts the
null hypothesis and states there is a difference, an effect, an impact or an association. That is,
it states there is a difference between a parameter and a hypothesized value. An alternative
hypothesis has either of the following three different forms:

• Two-sided alternative; H1 : θ 6= θ0.

• One-sided (right tailed) alternative; H1 : θ > θ0.

• One-sided (left tailed) alternative; H1 : θ < θ0.

Errors in Hypothesis Testing

There are two types of errors in hypothesis testing.

• Type I Error: Type I error is an error occurred if one rejects the null hypothesis
which is actually true. The probability of making Type I error is called significance level
(denoted by α). Consequently, the probability of not rejecting a true null hypothesis is
1− α and called confidence level.

• Type II Error: Type II error is an error occurred if one failed to reject the null
hypothesis which is actually false. The probability of making Type II error is denoted
by β. The probability of correctly rejecting the null hypothesis which is actually false,
called power of a test, is, therefore, 1 − β. In other words, the power of a test is the
probability of detecting a significant difference, if any, between θ and θ0.

Decision about H0

Null Hypothesis (H0) Do not reject H0 Reject H0

True Correct decision Type I error
False Type II error Correct decision

115

mailto:es.awol@gmail.com


Bio/Statistics- SPHM 5011 c© 2021 By: Awol S., E-mail: es.awol@gmail.com

In statistical hypothesis testing, the maximum acceptable probability of rejecting a true null
hypothesis, the significance level (α), is specified first. The common choices are α = 10%
(means 90% confidence level), α = 5% (means 95% confidence level) and α = 1% (means 99%
confidence level).

Steps in Hypothesis Testing

A statistical hypothesis test can be formally summarized as a five-step process:

• Step 1: State both the null and alternative hypotheses, that is, H0 and H1.

• Step 2: Specify the maximum acceptable level of significance (α). Then, obtain the
critical (tabulated) value (Ttab) which is used to define the rejection (critical) region of
the null hypothesis (H0). For a one sided test, the critical (tabulated) value is Ttab = Tα.
And for a two sided test, the critical (tabulated) value is Ttab = Tα/2.

• Step 3: Define the appropriate test statistic and then find its calculated value (Tcal).

• Step 4: Decision about H0. There are two possible methods for deciding whether to
reject H0 or not.

– Critical value method: If the calculated value of the test statistic falls in the
critical (rejection) region (that is, |Tcal| ≥ Ttab), the null hypothesis can be rejected.

– The p−value method: A p-value is the probability of obtaining values of a test
statistic as extreme as that observed if the null hypothesis is true. For a one-sided
test, p−value = P (T ≥ |Tcal|) and for a two-sided test, p−value = 2×P (T ≥ |Tcal|).
If the p− value ≤ α, then H0 can be rejected.

• Step 5: Conclusion.

Notes: In a statistical test, the null hypothesis H0 is rejected when there is sufficient evidence
against it and the test is said to be significant. But if H0 is not rejected, the test is said to
be insignificant (not significant).

If a statistical test is found significant, we need to answer two or more questions.

1. What is the direction of the effect? Difference inferential questions (t test or analysis of
variance) compare two or more groups so it is necessary to state which group performed
better. For associational inferential questions (eg, correlation, regression), the sign is
very important, so we must indicate whether the relationship is positive or negative.

2. What is the size of the effect? We should include the effect size, confidence intervals or
both in the description of our results.

3. With large samples, it is possible to find statistical significance even when the difference
is very small (i.e., has a small effect size). A significant result with a small effect size
means that it is sure that there is at least a little difference, but it may not be of any
practical importance. Hence, a statistical significant test does not indicate practical
(clinical) importance (significance). Therefore, the researcher or consumer of the re-
search should make a judgment whether the result has practical (clinical) importance
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(significance). To do so, they need to take into account the effect size, the cost of im-
plementing the change, and the probability and severity of any side effect or unintended
consequence.
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Chapter 8

Inference for Continuous Responses

8.1 Inference about a Single Population Mean

Suppose a sample is selected from a single group (population) and there is one quantitative
variable which is assumed to be normally distributed.

That is, given a random sample y1, y2, · · · , yn of size n from a normal population with mean
µ and variance σ2; Y ∼ N (µ, σ2).

The point estimator of the population mean µ is the sample mean ȳ (ȳ estimates µ). The
mean of the sampling distribution of the sample mean ȳ is E(ȳ) = µ. Also, the variance of
the sample mean is V̂ (ȳ) = σ2

ȳ = σ2/n. Thus, the sampling distribution of the sample mean
is identical as normal with mean µ1 and variance σ2/n; ȳ ∼ N (µ, σ2/n).

Therefore, the standard error of the sample mean ȳ is SE(ȳ) = σȳ = σ/
√
n. Consequently,

the estimated standard error of the mean is ŜE(ȳ) = σ̂ȳ = s/
√
n.

8.1.1 Testing for a Population Mean µ

The interest here is whether the population average µ of the variable of interest Y takes a
particular value, say µ0.

Step 1: State both the null and alternative hypotheses. There three options are:

Option 1: H0 : µ = µ0 vs H1 : µ 6= µ0 - two sided test

Option 2: H0 : µ = µ0 vs H1 : µ < µ0 - one sided (left tailed) test

Option 3: H0 : µ = µ0 vs H1 : µ > µ0 - one sided (right tailed) test

Step 2: Specify the level of significance α and obtain the corresponding critical (tabulated)
value. The critical (tabulated) value for a two sided test is Ttab = Tα/2 whereas the
critical (tabulated) value for a one sided test is Ttab = Tα.

Step 3: Use the appropriate test statistic and obtain its calculated value Tcal. Here, there
are three possible cases for selecting the appropriate test statistic:

118



Bio/Statistics- SPHM 5011 c© 2021 By: Awol S., E-mail: es.awol@gmail.com

Case 1: When σ is known. If σ is known, the appropriate test statistic is the z test
statistic. That is,

Z =
ȳ − µ
σ/
√
n
∼ N (0, 1).

Case 2: When σ is not known but n is large (n ≥ 30). If σ is not known but n is
large, again the appropriate test statistic is the z test statistic. That is defined as:

Z =
ȳ − µ
s/
√
n
∼ N (0, 1).

Case 3: When σ is not known and n is small (n < 30). If σ is not known and n
is small, the appropriate test statistic is t statistic with n− 1 degrees of freedom.
That is,

t =
ȳ − µ
s/
√
n
∼ t(n− 1).

Step 4: Decision: If |Tcal| ≥ Ttab or p−value < α, H0 can be rejected.

Step 5: Conclusion.

Example 8.1. The life expectancy of HIV/AIDS patients is expected to be 50 years. A
survey was conducted on eleven patients of a certain hospital and the data obtained as: 54.2,
58.2, 56.6, 50.4, 44.2, 61.9, 57.5, 49.7, 55.4, 53.4, 57.0. Does the data confirm the expected
view?

Solution: Sample size n = 11, sample mean ȳ = 54.41, sample variance s2 = 23.607, sample
standard deviation s = 4.859.

• Let µ be the mean life expectancy of HIV/AIDS patients.

Step 1: Hypothesis:

H0 : µ = 50. The mean life expectancy of HIV/AIDS patients is not significantly differ-
ent from 50 years.

H1 : µ 6= 50. The mean life expectancy of HIV/AIDS patients is significantly different
from 50 years.

Step 2: Let us assume α = 0.05. Since the sample size n < 30, the critical (tabulated) value
is determined using the t distribution. Thus, ttab = tα/2(n− 1) = t0.025(10) = 2.228.

Step 3: The calculated test statistic is tcal = ȳ−µ
s/
√
n

= 54.41−50
4.859/

√
11

= 3.01.

Step 4: Decision: Since |tcal| = 3.01 > ttab = t0.025(10) = 2.228, H0 should be rejected. Or
using the p-value method, p-value=2× P [t(10) > 3.01] = 2× 0.0066 = 0.0132 which is
less than α = 0.05, H0 can be rejected.

Step 5: Conclusion: Therefore, the conclusion is there is sufficient evidence to reject the null
hypothesis and hence ”the mean life expectancy of HIV/AIDS patients is significantly
different from 50 years at 5% significance level”. In particular, since the difference is
positive, ’the mean life expectancy of HIV/AIDS patients is significantly larger than 50
years at α = 5%’.
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Example 8.2. The thermostat in a classroom is set at 72◦F, but we think the thermostat is
not working well. On seven randomly selected days, we measure the temperature at our seat.
The measurements (in degree Fahrenheit) are 71, 73, 69, 68, 69, 70, and 71. Test whether
the mean temperature at our seat is different from 72◦F at 99% confidence level.

Solution: Sample size n = 7, sample mean ȳ = 70.14, sample variance s2 = 2.81, sample
standard deviation s = 1.68.

• Let µ be the mean temperature (in degree Fahrenheit) in the classroom.

Step 1: Hypothesis:

H0 : µ = 72◦F. The mean temperature of the classroom is not significantly different
from 72◦F .

H1 : µ 6= 72◦F. The mean temperature of the classroom is significantly different from
72◦F .

Step 2: It is given α = 0.01. Since the sample size is n < 30, the critical value is determined
using the t distribution. Thus, ttab = tα/2(n− 1) = t0.005(6) = 3.707.

Step 3: The calculated test statistic is tcal = ȳ−µ
s/
√
n

= 70.14−72
1.68/

√
7

= −2.929.

Step 4: Decision: Since |tcal| = 2.929 < ttab = t0.005(6) = 3.707, H0 cannot be rejected. Or
p-value=2× P [t(6) > 2.929] = 2× 0.0132 = 0.0264 which is greater than α = 0.01, H0

cannot be rejected.

Step 5: Conclusion: Therefore, there is not sufficient evidence to say ”the mean temperature
of the class room is significantly different from 72◦F at 1% significance level”. In other
words, ”the mean temperature of the class room is not significantly different from 72◦F
at 1% significance level”.

Example 8.3. A researcher is interested to examine the cholesterol levels in women of aged
18-30 but s/he did not have any prior information about the distribution of cholesterol lev-
els in such women. It was known that the distribution of cholesterol levels in women aged
31-50 is known to be approximately normal with a mean of 190 mg/dL. Thus, the researcher
wanted to evaluate whether the mean cholesterol level differed from the mean cholesterol
level of middle-aged women. A random sample of 100 females aged 18-30 was selected and
the selected females were administered blood tests that yielded cholesterol levels having a
mean of 178.2 mg/dL and a standard deviation of 45.3 mg/dL. Is there significant evidence
in the data to demonstrate that the mean cholesterol level of females of aged 18-30 differs
from 190 mg/dL?

Solution: Let µ be the mean cholesterol level of females of aged 18-30.

Step 1: Hypothesis:

H0 : µ = 190. The mean cholesterol level of females of aged 18-30 is not significantly
different from 190 mg/dL.

H1 : µ 6= 190. The mean cholesterol level of females of aged 18-30 is significantly differ-
ent from the mean cholesterol level of females of aged 31-50.
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Step 2: Assume α = 0.05 level of significance. Since the sample size is large (n = 100 > 30),
the critical (tabulated) value is determined using the z distribution, ztab = zα/2 =
z0.025 = 1.96.

Step 3: The calculated test statistic is zcal = ȳ−µ
s/
√
n

= 178.2−190
45.3/

√
100

= −2.60.

Step 4: Decision: Since |zcal| = 2.60 > ztab = z0.025 = 1.96, H0 can be rejected. Or using
the p−value method, p−value= 2× P (Z > 2.60) = 2× 0.0047 = 0.0094. This p−value
is less than α = 0.05 indicating sufficient evidence against H0.

Step 5: Conclusion: Therefore, the mean cholesterol level of females of aged 18-30 is sig-
nificantly different from 190 mg/dL at 5% significance level. In particular, since the
difference is negative, the mean cholesterol level of females of aged 18-30 is significantly
less than 190 mg/dL at α = 5%.

Example 8.4. As the public concern about bacterial infections increases, a soap manufac-
turer quickly promoted a new product to meet the demand for an antibacterial soap. This
new product has a substantially higher price than the ’ordinary soaps’on the market. A con-
sumer testing agency notes that ordinary soap also kills bacteria and questions whether the
new antibacterial soap is a substantial improvement over the ordinary soap. From previous
studies using many different brands of ordinary soaps, the mean bacteria count is 33 for or-
dinary soap products. The consumer group runs a test on the antibacterial soap using 35
petri dishes and it yielded a mean bacterial count of 31.2 with a standard deviation of 8.4.
Do the data provide sufficient evidence that the antibacterial soap is more effective than the
ordinary soap in reducing bacteria counts?

Solution: Let µ be the mean bacterial count for the antibacterial soap.

Step 1: Hypothesis:

H0 : µ = 33. The mean bacterial count for the antibacterial soap is not significantly
different from 33.

H1 : µ < 33. The mean bacterial count for the antibacterial soap is not significantly
different from 33 (the antibacterial soap is more effective than the ordinary soap).

Step 2: Assume α = 0.05 level of significance. Since the sample size is relatively large
(n = 35 > 30), the critical (tabulated) value is determined using the z distribution,
ztab = zα = z0.05 = 1.645.

Step 3: The calculated value of the test statistic is zcal = ȳ−µ
s/
√
n

= 31.2−33
8.4/
√

35
= −1.27.

Step 4: Decision: Since |zcal| = 1.27 < ztab = z0.05 = 1.645, H0 cannot rejected. Or using
the p−value method, p−value = P (Z > 1.27) = 0.1020. Clearly, this p−value is greater
than α = 0.05 indicating no sufficient evidence against H0.

Step 5: Conclusion: Therefore, the conclusion is ”the mean bacterial count for the antibac-
terial soap is not significantly less than 33 at 5% significance level”. In other words,
”there is not sufficient evidence that the antibacterial soap is more effective than the
ordinary soap at 5% significance level”.
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Example 8.5. A research done by a graduating student reports that the average score of
SPHMMC students in biostatistics course is greater than 80. To test this claim, a random
sample of 10 students was taken and their scores in the course are recorded as: 78, 88, 93,
68, 98, 73, 88, 83, 93, 98. At 0.05 level of significance, test the validity of this claim.

Solution: Sample size n = 10, sample mean ȳ86, sample variance s2 = 106.67, sample
standard deviation s = 10.33.

• Let µ be the mean score of SPHMMC students in biostatistics course.

Step 1: Hypothesis:

H0 : µ = 80. The mean score of SPHMMC students in biostatistics course is not signif-
icantly different from 80.

H1 : µ > 80. The mean score of SPHMMC students in biostatistics course is significantly
greater than 80.

Step 2: Given α = 0.05. Since the sample size n < 30, the critical (tabulated) value is
determined using the t distribution. Thus, ttab = tα(n− 1) = t0.05(9) = 1.833.

Step 3: The calculated test statistic is tcal = ȳ−µ
s/
√
n

= 86−80
10.33/

√
10

= 1.837.

Step 4: Decision: Since |tcal| = 1.837 > ttab = t0.05(9) = 1.833, H0 can be rejected. Or using
the p-value method, p-value=P [t(9) > 1.837] = 0.0497 which is less than α = 0.05, H0

can be rejected.

Step 5: Conclusion: Therefore, it can be concluded that the average score of SPHMMC
students in biostatistics course is significantly greater than 80 at 5% level of significance.

8.1.2 Interval Estimation for a Population Mean µ

A statistical test merely indicates whether a particular value for a parameter is plausible or
not. The construction of a confidence interval determines the range of plausible values for
which H0 is ”not rejected”.

The (1 − α)100% confidence interval for a population mean µ is constructed by solving the
equation

P

(∣∣∣∣ ȳ − µσ/
√
n

∣∣∣∣ ≤ zα/2) = P

(
−zα/2 <

ȳ − µ
σ/
√
n
< zα/2

)
= (1− α)100%

for µ. The confidence interval for µ is given by P
(
ȳ − zα/2 σ√

n
< µ < ȳ + zα/2

σ√
n

)
= (1 −

α)100%.

Case 1: When σ is known. The (1− α)100% confidence interval for µ is given by:(
ȳ − zα/2

σ√
n
, ȳ + zα/2

σ√
n

)
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Case 2: When σ is not known but n is large (n ≥ 30). The (1 − α)100% confidence
interval for µ is given by: (

ȳ − zα/2
s√
n
, ȳ + zα/2

s√
n

)
Case 3: When σ is not known and n is small (n < 30). The (1 − α)100% confidence

interval for µ is given by:[
ȳ − tα/2(n− 1)

s√
n
, ȳ + tα/2(n− 1)

s√
n

]
Note: The half-width (plus-or-minus term) of the confidence interval for a population mean
µ is d = zα/2

σ√
n

and called margin of error. And, the entire width of the confidence interval

w = 2d is also called tolerable error.

Example 8.6. Consider example 8.1. Find the point estimate for the mean life expectancy
of HIV/AIDS patients and also construct the 95% confidence interval. What is the value of
the margin of error and tolerable error?

Solution: From the example point estimate of the population mean life expectancy of
HIV/AIDS patients is ȳ = 54.41. The sample standard deviation of the life expectancy
of HIV/AIDS patients is s = 4.859.

Here, the sample size is small, the critical value corresponding to the 95% confidence level
is ttab = tα/2(n − 1) = t0.025(10) = 2.228. Therefore, the 95% confidence interval for the
population mean life expectancy of HIV/AIDS patients is:[

ȳ ± t0.025(10)
s√
n

]
=

[
54.41− 2.228

(
4.859√

11

)
, 54.41 + 2.228

(
4.859√

11

)]
= (54.41− 3.2641, 54.41 + 3.2641)

= (51.15, 57.67)

Hence, the margin of error is d = 2.228
(

4.859√
11

)
= 3.2641 and the tolerable error is w = 2d =

6.5282.

Example 8.7. Recall example 8.3 and construct the 95% confidence interval for the mean
cholesterol level in women of aged 18-30. Also, determine the value of the margin of error
and tolerable error.

Solution: The point estimate of the population mean cholesterol level in women of aged
18-30 is ȳ = 178.2 mg/dL. The sample standard deviation of the cholesterol levels in women
of aged 18-30 is s = 45.3 mg/dL.

Since the sample size is large, the critical value corresponding to the 95% confidence level is
zα/2 = z0.025 = 1.96. Therefore, the 95% confidence interval for the mean cholesterol level in
women of aged 18-30 is:(

ȳ ± zα/2
s√
n

)
=

[
178.2− 1.96

(
45.3√
100

)
, 178.2 + 1.96

(
45.3√

100

)]
= (169.321, 187.079).
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Hence, the margin of error is d = 1.96
(

45.3√
100

)
= 8.879 and the tolerable error is w = 2d =

17.758.

Note: If the (1 − α)100% confidence interval for a population mean of a two-sided test
includes the hypothesized value µ0, the null hypothesis should not be rejected at α level of
significance. If, however, the confidence interval does not include µ0, then the null hypothesis
should be rejected at that level.

Example 8.8. Recall example 8.5. Construct the 95% confidence interval for the population
mean score of SPHMMC students in biostatistics course.

Solution: It is given ȳ = 86 and s = 10.33. Since the sample size is small, the critical value
corresponding to the 95% confidence level is tα/2(10−1) = t0.025(9) = 2.262. Consequently, the
95% confidence interval is for the population mean score of SPHMMC students in biostatistics
course is:[

x̄± tα/2(n− 1)
s√
n

]
=

[
86− 2.262

(
10.33√

10

)
, 86 + 2.262

(
10.33√

10

)]
= (78.611, 93.389).

8.2 Comparing Two Population Means: Paired Samples

The inferences in the previous section have concerned about a parameter from a single popu-
lation. There may be situations that need comparison of parameters from two or more groups
(populations). In studies involving the comparison of two groups, there are two ways of taking
the samples: paired and independent.

In paired comparison, the presence and absence of a single treatment or two treatments are
compared. Here a pair of same (e.g., persons) or identical (e.g., plots) experimental units are
selected, and one type of treatment is applied on one member of each pair and another type
of treatment is applied on the second member of each pair. Then the response of interest is
recorded on each pair. The paired responses are then analysed by computing their differences.

A common application occurs when the response is measured on two different occasions
(appropriate for pre-post treatment responses). The aim of pairing sample is to make the
comparison more accurate by having experimental units in each pair as likely as possible
except the treatment difference.

Suppose there are two paired normally distributed random variables y1 and y2 with mean
µ1 and µ2, and variance σ2

1 and σ2
2, respectively. Thus, the difference of the two variables,

di = y1i − y2i; i = 1, 2, · · · , n, is treated as if it were a single sample.

If the observed differences are di = y1i− y2i; i = 1, 2, · · · , n, then the population mean of the

differences µd is estimated by the sample mean of the differences d̄ = 1
n

n∑
i=1

di. Similarly, the

population variance of the differences σ2
d is estimated by sample variance of the differences

sd = 1
n−1

n∑
i=1

(di − d̄)2.
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The point estimator of the population mean of the differences µd is the sample mean of the
differences d̄ (d̄ estimates µd). The mean of the sampling distribution of the difference d̄
is E(d̄) = µd. Also, the variance of the differences is σ2

d̄
= σ2

d/n. Thus, the sampling dis-

tribution of the difference d = y1 − y2 is normal with mean µd and variance σ2
d/n, that is,

d̄ ∼ N (µd, σ
2
d/n).

The standard error of the sample mean of the differences d̄ is σd̄ = σd/
√
n. Consequently, the

estimated standard error of the differences is σ̂d̄ = sd/
√
n.

8.2.1 Testing for the Population Mean of the Differences µd

The interest in paired samples is whether the average of the differences µd of the variables of
interest Y1 and Y2 takes a particular value, say µd0. The difference is typically assumed to be
zero unless explicitly specified.

The steps to be followed is similar to the one used for the one sample case:

Step 1: State both the null and alternative hypotheses. There three possible options are:

Option 1: H0 : µd = 0 vs H1 : µd 6= 0 - two sided test

Option 2: H0 : µd = 0 vs H1 : µd < 0 - one sided (left tailed) test

Option 3: H0 : µd = 0 vs H1 : µd > 0 - one sided (right tailed) test

Step 2: Specify the level of significance α and obtain the critical (tabulated) value. The
critical (tabulated) value for a two sided test is Ttab = Tα/2 whereas the critical value
for a one sided test is Ttab = Tα.

Step 3: Use the appropriate test statistic and obtain its calculated value Tcal. As usual,
there are three possible cases for selecting the appropriate test statistic.

Case 1: When σd is known. If σd is known, the appropriate test statistic is the z
test statistic. That is,

Z =
d̄− µd
σd/
√
n
∼ N (0, 1).

Case 2: When σd is not known but n is large (n ≥ 30). If σd is not known but n
is large, again the appropriate test statistic is the z test statistic. That is defined
as:

Z =
d̄− µd
sd/
√
n
∼ N (0, 1).

Case 3: When σd is not known and n is small (n < 30). If σd is not known and n
is small, the appropriate test statistic is t statistic with n− 1 degrees of freedom.
That is,

t =
d̄− µd
sd/
√
n
∼ t(n− 1).

Step 4: Decision: If |Tcal| ≥ Ttab or p−value < α, H0 can be rejected.

Step 5: Conclusion.
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Example 8.9. A medical researcher wishes to determine if a pill has an effect on reducing
the blood pressure of individuals. The study involves recording the initial blood pressure of
15 women. After they took the pill for six months, their blood pressure are again recorded.
The data is:

Women 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Before (y1i) 70 80 72 76 76 76 72 78 82 64 74 92 74 68 84
After (y2i) 68 72 62 70 58 66 68 52 64 72 74 60 74 72 74

Do the data substantiate the claim that the pill reduced blood pressure?

Solution: Let µd be the population mean of the differences in the blood pressure of women.
The observed differences of the before - after blood pressures are:

Women 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

di = y1i − y2i 2 8 10 6 18 10 4 26 18 -8 0 32 0 -4 10

The sample mean of the differences is d̄ = 1
15(2 + 8 + · · ·+ 10) = 1

15(132) = 8.8. The sample
variance of the differences is s2

d = 1
15−1{(2−8.8)2+(8−8.8)2+· · ·+(10−8.8)2} = 1

14(1686.4) =
120.457. This implies the sample standard deviation of the differences is sd = 10.98.

Step 1: Hypothesis:

H0 : µd = 0. The mean of the differences in the blood pressure of women is not signifi-
cantly different from 0.

H1 : µd > 0. The mean of the differences in the blood pressure of women is significantly
larger than 0 (the pill has a significant decreasing effect in the blood pressure of
women).

Step 2: Assume α = 0.05. Since the sample size n < 30, the critical value is determined
using the t distribution. Thus, ttab = tα(n− 1) = t0.05(14) = 1.761.

Step 3: The calculated test statistic is tcal = d̄−µd
sd/
√
n

= 8.8−0
10.98/

√
15

= 3.10.

Step 4: Decision: Since |tcal| = 3.10 > ttab = t0.05(14) = 1.761, H0 can be rejected. Or
p−value = P [t(14) > 3.10] = 0.0039 less than α = 0.05.

Step 5: Conclusion: Therefore, there is sufficient evidence to reject the null hypothesis and
conclude that ”the mean of the differences in the blood pressure of women is significantly
larger than 0 at 5% level of significance”. That is, the pill has a significant decreasing
effect in the blood pressure of women at α = 5%.

8.2.2 Interval Estimation of the Population Mean of the Differences µd

The (1 − α)100% confidence interval for the population mean of the differences µd is con-
structed by solving the equation

P

(∣∣∣∣ d̄− µdσd/
√
n

∣∣∣∣ ≤ zα/2) = P

(
−zα/2 <

d̄− µd
σd/
√
n
< zα/2

)
= (1− α)100%

for µd. The confidence interval for µd is given by P
[
d̄− zα/2

(
σd√
n

)
< µd < d̄+ zα/2

(
σd√
n

)]
=

(1− α)100%.
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Case 1: When σd is known. The (1− α)100% confidence interval for µd is given by:[
d̄− zα/2

(
σd√
n

)
, d̄+ zα/2

(
σd√
n

)]
Case 2: When σd is not known but n is large (n ≥ 30). The (1 − α)100% confidence

interval for µd is given by:[
d̄− zα/2

(
sd√
n

)
, d̄+ zα/2

(
sd√
n

)]
Case 3: When σd is not known and n is small (n < 30). The (1 − α)100% confidence

interval for µd is given by:[
d̄− tα/2(n− 1)

sd√
n
, d̄+ tα/2(n− 1)

sd√
n

]
Example 8.10. Construct the 95% confidence interval for the mean difference of blood
pressure, given in example 8.9.

Solution: The 95% confidence interval is:(
d̄± tα/2(n− 1)

sd√
n

)
=

[
8.8− 2.145

(
10.98√

15

)
, 8.8 + 2.145

(
10.98√

15

)]
= (2.72, 14.88).

Note: If the (1− α)100% confidence interval for the population mean difference µd includes
0, the null hypothesis of the two-sided test cannot be rejected at α level of significance. If,
however, the confidence interval does not include 0, then the null hypothesis of no difference
can be rejected at that level.

8.3 Comparing Two Population Means: Independent Samples

Suppose a random sample of y11, y12, · · · , y1n1 is drawn from a normal population with mean
µ1 and variance σ2

1, and another random sample y21, y22, · · · , y2n2 is drawn from a normal
population with mean µ2 and variance σ2

2. Thus, ȳ1 ∼ N (µ1, σ
2
1/n1) and ȳ2 ∼ N (µ2, σ

2
2/n2),

where ȳ1 and ȳ2 are the sample means of the samples drawn from the first and second popu-
lations, respectively.

The interest in such independent samples is to test whether the difference of the population
means is zero, that is, µ1 − µ2 = 0.

Thus, the difference of the sample means ȳ1 − ȳ2 is an estimator for the difference of the
population means µ1−µ2 (ȳ1− ȳ2 estimates µ1−µ2). The mean of the sampling distribution
of the difference of the sample means ȳ1 − ȳ2 is E(ȳ1 − ȳ2) = µ1 − µ2. Also, the variance of

the difference of the sample means is V̂ (ȳ1 − ȳ2) = σ2
ȳ1−ȳ2 =

σ2
1
n1

+
σ2
2
n2

. Thus, the sampling
distribution of the sample means difference ȳ1 − ȳ2 is identical as being normal with mean

µ1 − µ2 and variance
σ2
1
n1

+
σ2
2
n2

, that is, ȳ1 − ȳ2 ∼ N
(
µ1 − µ2,

σ2
1
n1

+
σ2
2
n2

)
.
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Therefore, the standard error of the sample means difference ȳ1 − ȳ2 is SE(ȳ1 − ȳ2) =

σȳ1−ȳ2 =

√
σ2
1
n1

+
σ2
2
n2

. The estimated standard error of the sample means difference ȳ1 − ȳ2 is

ŜE(ȳ1 − ȳ2) = σ̂ȳ1−ȳ2 =

√
s21
n1

+
s22
n2

.

Note that s2
1 = 1

n1−1

n1∑
i=1

(y1i − ȳ1)2 is the sample variance of the first group and s2
2 =

1
n2−1

n2∑
i=1

(y2i − ȳ2)2 is the sample variance of the second group; and the sample mean of

the first group is ȳ1 = 1
n1

n1∑
i=1

y1i and the sample mean of the second group is ȳ2 = 1
n2

n2∑
i=1

y2i.

If the two groups have equal population variances σ2
1 = σ2

2 = σ2, that is, ȳ1 ∼ N (µ1, σ
2/n1)

and ȳ2 ∼ N (µ2, σ
2/n2), then ȳ1 − ȳ2 ∼ N

[
µ1 − µ2, σ

2
(

1
n1

+ 1
n2

)]
.

Now the standard error of the sample means difference ȳ1 − ȳ2 is SE(ȳ1 − ȳ2) = σȳ1−ȳ2 =

σ
√

1
n1

+ 1
n2

. The estimated standard error of the sample means difference ȳ1 − ȳ2 is ŜE(ȳ1 −

ȳ2) = σ̂ȳ1−ȳ2 = spooled

√
1
n1

+ 1
n2

where spooled is the pooled standard deviation of both groups.

That is, s2
pooled =

(n1−1)s21+(n2−1)s22
n1+n2−2 is an estimate of the common variance σ2.

8.3.1 Testing for the Difference of Two Population Means

Case 1: When σ2
1 and σ2

2 are equal

Step 1: State both the null and alternative hypotheses. There three possible options are:

Options 1: H0 : µ1 = µ2 vs H1 : µ1 6= µ2 - two sided test

Options 2: H0 : µ1 = µ2 vs H1 : µ1 < µ2 - one sided (left tailed) test

Options 3: H0 : µ1 = µ2 vs H1 : µ1 > µ2 - one sided (right tailed) test

Step 2: Specify the level of significance α and obtain the critical value.

• If both sample sizes (n1 and n2) are large, the critical value (tabulated) for a two
sided test is ztab = zα/2 whereas the critical value for a one sided test is ztab = zα.

• If the sample sizes (n1 and n2) are small, the critical (tabulated) value for a two
sided test is ttab = tα/2(n1 + n2 − 2) whereas the critical value for a one sided test
is ttab = tα(n1 + n2 − 2).

Step 3: Use the appropriate test statistic and obtain the calculated value.

• If the sample sizes are large, the z test statistic is used. That is,

Z =
(ȳ1 − ȳ2)− (µ1 − µ2)

spooled

√
1
n1

+ 1
n2

∼ N (0, 1)

• If the sample sizes are small, the t test statistic is used. That is.

t =
(ȳ1 − ȳ2)− (µ1 − µ2)

spooled

√
1
n1

+ 1
n2

∼ t(n1 + n2 − 2)
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Step 4: Decision: H0 can be rejected if |Tcal| > Ttab or p− value < α.

Step 5: Conclusion.

Example 8.11. Company officials were concerned about the length of time a particular drug
product retained its potency. A random sample of 8 bottles of the product was drawn from
the production line and measured for potency. A second sample of 10 bottles was obtained
and stored in a regulated environment for a period of one year. The potency readings obtained
from each sample are given below.

Sample 1 (Fresh) 10.2 10.5 10.3 10.8 9.8 10.6 10.7 10.2
Sample 2 (Stored) 9.8 9.6 10.1 10.2 10.1 9.7 9.5 9.6 9.8 9.9

Test the null hypothesis that the drug product retains its potency.

Solution: Let µ1 be the mean potency of the (fresh) drug product taken from the production
line and µ2 be the mean potency of the (stored) drug product that was retained for a year.
The summary statistics of the data are:

ȳ1 =
1

n1

n1∑
i=1

y1i =
1

8
(83.1) = 10.388 and ȳ2 =

1

n2

n2∑
i=1

y2i =
1

10
(98.3) = 9.830

s2
1 =

1

n1

[
n1∑
i=1

y2
1i −

1

n1
(

n1∑
i=1

y1i)
2

]
=

1

7
[863.95− 1

8
(83.1)2] = 0.107

s2
2 =

1

n2

[
n2∑
i=1

y2
2i −

1

n2
(

n2∑
i=1

y2i)
2

]
=

1

9
[966.81− 1

10
(98.3)2] = 0.058

s2
pooled =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
=

(8− 1)(0.107) + (10− 1)(0.058)

8 + 10− 2
= 0.079

spooled = 0.281.

Step 1: Hypothesis:

H0 : µ1 = µ2. The mean potency of the drug product taken from the production line
and the mean potency of the drug product stored for a period of one year are not
significantly different.

H1 : µ1 6= µ2. The mean potency of the drug product taken from the production line
and the mean potency of the drug product stored for a period of one year are
significantly different.

Step 2: Assume α = 0.05. Since the sample sizes are small, the critical value is ttab =
tα/2(n1 + n2 − 2) = t0.025(16) = 2.12.

Step 3: The calculated test statistic is t = (ȳ1−ȳ2)−(µ1−µ2)

spooled
√

1
n1

+ 1
n2

= (10.388−9.830)−0

0.281
√

1
8

+ 1
10

= 4.186.

Step 4: Decision: Since |tcal| = 4.186 > ttab = 2.12, H0 can be rejected. Or p−value
= 2× P [t(16) > 4.186] = 2× 0.0003 = 0.0006 < α = 0.05.
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Step 5: Therefore, there is a significant difference in the mean potency of the drug product
from the production line and the drug that was retained for one year at α = 5%. In
particular, the mean potency of the drug product that was retained for one year is
significantly lower than the one taken from the production line.

Case 2: When σ2
1 and σ2

2 are not equal

The above test statistic is only used when the two distributions have the same variance.
When the variances are different (σ2

1 6= σ2
2), they are estimated separately. That is, the

sample variance of the first group s2
1 estimates σ2

1 and the sample variance of the second
group s2

2 estimates σ2
2. Therefore, the z test statistic for large sample sizes is:

z =
(ȳ1 − ȳ2)− (µ1 − µ2)√

s21
n1

+
s22
n2

∼ N (0, 1).

For small sample sizes, the t test statistic is given as:

t =
(ȳ1 − ȳ2)− (µ1 − µ2)√

s21
n1

+
s22
n2

∼ t(v)

where v is the degrees of freedom defined as v =
(s21/n1+s22/n2)2

(s21/n1)2/(n1−1)+(s22/n2)2/(n2−1)
.

Example 8.12. A quick but impressive method of estimating the concentration of a chemical
in a rat has been developed. The sample from this method has 8 observations and the sample
from the standard method has 4 observations. Assuming different population variances, test
whether the quick method gives under-estimate result. The data in the two samples are:

Standard Method 25 24 25 26
Quick Method 23 18 22 28 17 25 19 16

Solution: Let µ1 be the population mean concentration of the chemical from the standard
method and µ2 be the population mean concentration of the chemical from the quick method.

Step 1: Hypothesis:

H0 : µ1 = µ2. The means of the concentrations of the chemical in the standard and
quick methods are not significantly different.

H1 : µ1 > µ2. The mean concentrations of the chemical in the standard method is sig-
nificantly larger than that of the quick method.

Step 2: Assume α = 0.05. Since the samples are small, t distribution will be used. The de-

grees of freedom for unequal variances assumption is v = (0.67/4+17.71/8)2

(0.67/4)2/(4−1)+(17.71/8)2/(8−1)
≈

8. Thus, ttab = t0.05(8) = 1.86.

Step 3: The calculated test statistic is t = (ȳ1−ȳ2)−(µ1−µ2)√
s21
n1

+
s22
n2

= (25−21)−0√
0.67
4

+ 17.71
8

= 2.60.

Step 4: Decision: Since |tcal| = 2.60 > ttab = 1.86, H0 can be rejected. Or p−value =
P [t(8) > 2.60] = 0.0158 < α = 0.05.
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Step 5: Conclusion: Therefore, the quick method gives an under-estimate result at α = 5%.

Example 8.13. For a random sample of 120 adult female born in country A, the mean
height was 62.7 inches with standard deviation 2.50 inches. For another random sample of
150 adult female born in country B the mean height was 61.8 inches with standard deviation
2.62 inches. Would you reject the null hypothesis that there is no difference in height between
adult female born in the two countries at 1% level of significance.

Solution: Let µ1 be the mean height of adult female born in country A and µ2 be the mean
height of adult female born in country B.

Step 1: Hypothesis:

H0 : µ1 = µ2. There is no significant difference in the mean heights of adult females
born in the two countries.

H1 : µ1 6= µ2. There is a significant difference in the mean heights of adult females born
in the two countries.

Step 2: Given α = 0.01. Since, the sample sizes are large, ztab = z0.01/2 = z0.005 = 2.58.

Step 3: The calculated test statistic is z = (ȳ1−ȳ2)−(µ1−µ2)√
s21
n1

+
s22
n2

= (62.7−61.8)−0√
(2.50)2

120
+

(2.62)2

150

= 2.88.

Step 4: Decision: Since |zcal| = 2.88 > ztab = 2.58, H0 can be rejected. Or p−value =
2× P (Z > 2.88) = 2× 0.0020 = 0.0040 < α = 0.01.

Step 5: Conclusion: Therefore, there is a difference in the population mean heights of adult
females in the two countries at α = 1%. Particularly, the mean height of adult females
born in country A is higher than the mean height of adult females born in country B
at α = 1%.

8.3.2 Interval Estimation for the Difference of Population Means µ1 − µ2

The (1 − α)100% confidence interval for the difference of the population means under the
common variance assumption is:[

(ȳ1 − ȳ2)± zα/2 spooled
√

1

n1
+

1

n2

]
.

Similarly, the (1−α)100% confidence interval for the difference of the population means when
the population variances are different is:(ȳ1 − ȳ2)± zα/2

√
s2

1

n1
+
s2

2

n2

 .
For small sample sizes, zα/2 is replaced by tα/2(n1 + n2 − 2) and tα/2(v) in the above two
equations respectively.
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Example 8.14. Construct the 95% confidence interval for the difference of the population
means of the potency of the two types of drugs (fresh and stored) considered in example 8.11.

Solution: The 95% confidence interval for the difference of the population means, µ1−µ2 is:[
(ȳ1 − ȳ2)± tα/2(n1 + n2 − 2) spooled

√
1

n1
+

1

n2

]
=

[
(10.388− 9.830)± 2.12(0.281)

√
1

8
+

1

10

]
= (0.275, 0.841).

Note: If the (1 − α)100% confidence interval for the difference of the population means
includes 0, the null hypothesis of no difference of the two means of a two-sided test cannot
be rejected at α level of significance. If, however, the confidence interval does not include 0,
then the two means are significantly different at that level.

8.4 Comparison of More Than Two Population Means

The t and Z tests have been used for testing the hypothesis of a single population mean equal
to a specified value or equality of two populations means when the sample size is small and
large respectively. However in testing the equality of more than two population means, the
technique of analysis of variance (ANOVA) will be used.

8.4.1 Analysis of Variance (ANOVA)

Suppose random samples representing a certain continuous (quantitative) variable are selected
from g different groups (populations). Assume the samples are independently and randomly
drawn from a reasonably normal distribution and have approximately equal variances.

Group 1 y11, y21, · · · , yn11 ∼ N (µ1, σ
2)

Group 2 y12, y22, · · · , yn22 ∼ N (µ2, σ
2)

...
...

Group g y1g, y2g, · · · , yngg ∼ N (µg, σ
2)

The interest is whether all the g group means are equal. For this purpose, ANOVA is used.
The principle in ANOVA is decomposing the total variability of the dataset into two com-
ponents representing different source of variation; one is the variability within groups and
the other is the variability between groups. The within groups variation is the variation of
the observation in each group resulting from uncontrolled biological variation, technical and
measurement errors; and the between variation is the variation among the group means.

The null hypothesis to be tested is that the all the g group means are equal and the alternative
hypothesis is at least one of the group mean is significantly different from the other. That is,

H0 : µ1 = µ2 = · · · = µg

H1 : not H0

To construct the test statistics, the total variation of the dataset (called total sum squares
- TSS) is decomposed into the between group variation (called between sum squares - BSS)
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and the within group variation (called within sum squares - WSS).

yij − ȳ = yij − ȳ + ȳj − ȳj
(yij − ȳ) = (yij − ȳj) + (ȳj − ȳ)

nj∑
i=1

(yij − ȳ)2 =

nj∑
j=1

(ȳj − ȳ)2 +

nj∑
i=1

(yij − ȳj)2

g∑
j=1

nj∑
i=1

(yij − ȳ)2

︸ ︷︷ ︸
Total Sum Squares

=

g∑
j=1

nj∑
i=1

(ȳj − ȳ)2

︸ ︷︷ ︸
Between Sum Squares

+

g∑
j=1

nj∑
i=1

(yij − ȳj)2

︸ ︷︷ ︸
Within Sum Squares

The TSS has n − 1 degrees of freedom, the BSS has g − 1 degrees of freedom and the WSS
has n− g degrees of freedom.

g∑
j=1

nj∑
i=1

(yij − ȳ)2

︸ ︷︷ ︸
df=n−1

=

g∑
j=1

nj(ȳj − ȳ)2

︸ ︷︷ ︸
df=g−1

+

g∑
j=1

(nj − 1)s2
j︸ ︷︷ ︸

df=n−g

The ratio of BSS and its degrees of freedom is called between mean squares (BMS); and the
ratio of WSS and its degrees of freedom is called within mean squares (WMS). Therefore, the
test statistic is called an F statistic which is based on a variance ratio test (the ratio of BMS
to WMS).

F =
BSS/(g − 1)

WSS/(n− g)
=

BMS

WMS
∼ F (g − 1, n− g)

Consequently, the critical value is determined using F distribution as Ftab = Fα(g− 1, n− g).
Therefore, if Fcal > Fα(g − 1, n − g) or p-value= P [F(g − 1, n − g) > Fcal] < α, the null
hypothesis of no difference in all the g population means can be rejected. Hence, at least one
group mean will be different from the others.

The ANOVA table is presented as follows.

Source of Variation Sum Squares df MS F

Between BSS =
g∑
j=1

nj(ȳj − ȳ)2 g − 1 BMS = BSS
g−1 F = BMS

WMS

Within WSS =
g∑
j=1

(nj − 1)s2
j n− g WMS = WSS

n−g

Total TSS =
g∑
j=1

nj∑
i=1

(yij − ȳ)2 n− 1

Note: ANOVA quite robust to (relatively unperturbed by) the violation of normality espe-
cially if the samples are equal size. But if the samples have different variances, the appropriate
non-parametric alternative for one-way ANOVA which is called Kruskal-Wallis test should
be used.

Example 8.15. Suppose a university wishes to compare the effectiveness of four teaching
methods (Slide, Self Study, Lecture, Discussion) for a particular course. Twenty four students
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are randomly assigned to the teaching methods, with 5, 6, 6 and 7 respectively. At the end
of teaching the students with their assigned method, a test (out of 20%) was given and the
performance of the students were recorded as follows:

Slide Self Study Lecture Discussion

9 10 12 9
12 6 14 8
14 6 11 11
11 9 13 7
13 10 11 8

5 16 6
7

Test the hypothesis that there is no difference among the four teaching methods and also
construct the ANOVA table.

Solution: The hypothesis to be tested is:

H0 : µ1 = µ2 = µ3 = µ4. All the four teaching methods are equally effective.

H1 : not H0. At least one teaching method significantly differs from the others.

The summary statistics needed are obtained as:

Slide (yi1) Self Study (yi2) Lecture (yi3) Discussion (yi4)

9 10 12 9
12 6 14 8
14 6 11 11
11 9 13 7
13 10 11 8

5 16 6
7

Sample size n1 = 5 n2 = 6 n3 = 6 n4 = 7
Mean ȳ1 = 11.800 ȳ2 = 7.667 ȳ3 = 12.833 ȳ4 = 8.000
Variance s2

1 = 3.700 s2
2 = 5.067 s2

3 = 3.767 s2
4 = 2.667

Also, the total sample size is n =
4∑
j=1

nj = 24 and the grand mean is ȳ = 1
n

4∑
j=1

nj∑
i=1

yij =

1
24(231) = 9.625.

Therefore, BSS =
g∑
j=1

nj(ȳj − ȳ)2 = 126.89 with df = 3 and WSS =
g∑
j=1

(nj − 1)s2
j = 74.97

with df = 20. Therefore, the calculated value of the F test statistic is

F =
BMS

WMS
=

126.89/3

74.97/20
= 11.28.

The ANOVA table is also constructed as follows.
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S.V. SS df MS F

Between BSS = 126.89 4− 1 = 3 BMS = 126.89
3 = 42.2967

F = 42.2967
3.7485 = 11.28

Within WSS = 74.97 24− 4 = 20 WMS = 74.97
20 = 3.7485

Total TSS = 201.85 24− 1 = 23

The critical value is Fcal = F0.05(3, 20) = 3.0984. Since Fcal = 11.28 > F0.05(3, 20) = 2.38 or
p−value=P [F (3, 20) > 11.28] = 0.0001 is less than 5%, H0 can be rejected. This means at
least one of the four teaching methods is significantly different at 5% significance level. But
which method is different from the others?

8.4.2 Mean Separation - Multiple Comparison

In ANOVA, once the null hypothesis is rejected, then there is a need to identify which pair of
group means are significant and which are not. There are several multiple comparison meth-
ods used for this purpose. Of them, the Fisher’s Least Significant Difference (LSD) mean
separation method will be considered in this course.

The LSD method compares two means at a time. For example, for comparing the jth and kth

group means, the LSD statistic is:

LSDjk = tα/2(n− g)

√
WMS

(
1

nj
+

1

nk

)
where j 6= k. Then, if ȳj − ȳk > LSDjk, there is a significant difference between µj and µk at
α significance level. Otherwise, no significant difference is observed at that significance level.

Example 8.16. Recall example 8.15 and identify the significant pair of teaching method
using LSD.

Solution: First, it is better to sort the groups (teaching methods) based on the sample
means. Hence, the ranks from first to the fourth are lecture: ȳ3 = 12.833, slide: ȳ1 = 11.800,
discussion: ȳ4 = 8.000, and self study: ȳ2 = 7.667, respectively. Then, the significance can
be checked by taking each pair of successive groups. As a result, there will be three pairs
of comparison: (Lecture vs Slide), (Slide vs Discussion) and (Discussion vs Self study). The
critical value is t0.025(20) = 2.086.

Methods ȳj − ȳk LSDjk Significance

Lecture vs Slide 12.833-11.800=1.033 2.086
√

3.7485(1
6 + 1

5) = 2.446 No

Slide vs Discussion 11.800- 8.000=3.800 2.086
√

3.7485(1
5 + 1

7) = 2.365 Yes

Discussion vs Self study 8.000- 7.667=0.333 2.086
√

3.7485(1
7 + 1

6) = 2.247 No

Therefore, lecture and slide are better teaching methods than the other two.
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Chapter 9

Inference for Categorical Responses

9.1 Inference about a Population Proportion

Recall a binary variable is a variable having only two categories, for example: patient outcome
(cured or dead), development of cancer (yes or no). One of the categories is labeled as success
and the other as failure. Mostly, the success outcome is coded by 1 and the failure is coded
by 0.

The probability of a success is denoted by π and the probability of a failure is denoted by
1− π. Then the probability distribution for the number of successes y in n independent and
identical trials, is:

P (Y = y) =

(
n

y

)
πy(1− π)n−y; y = 0, 1, 2, · · · , n.

Recall the mean and variance of the number of successes y are nπ and nπ(1 − π), respec-
tively. If both the expected number of outcomes are at least 5, then a normal distribution
with mean nπ and variance nπ(1− π) can be used as an approximation for the binomial. If
Y ∼ Bin(n, π), then Y ∼ N (nπ, nπ(1 − π)). The approximation becomes more precise for
large n.

In a random sample of n from a population, if there are y successes, then the sample pro-
portion of successes is p = y

n (alternatively, it can be denoted by π̂). The point estimator of
the binomial parameter π is the sample proportion of successes p (p estimates π). The mean
of the sampling distribution of a sample proportion p is E(p) = µp = π. Also, the variance
of the sample proportion of successes is V (p) = σ2

p = π(1 − π)/n. Hence, for large sample
size, the sampling distribution of a sample proportion is normal with mean π and variance
π(1− π)/n. That is, p ∼ N [π, π(1− π)/n].

Therefore, the standard error of the sample proportion p is SE(p) = σp =
√
π(1− π)/n.

Consequently, the estimated standard error of the sample proportion p is ŜE(p) = σ̂p =√
p(1− p)/n.
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9.1.1 Testing for a Population Proportion π

The interest here is whether the population proportion of success π takes a particular value,
say π0.

The Wald Test

The Wald test uses the sample proportion p for estimating the standard error of the sample
proportion p. That is, the estimated standard error is ŜE(p) = σ̂p =

√
p(1− p)/n.

Step 1: State both the null and alternative hypotheses. There three options are:

Option 1: H0 : π = π0 vs H1 : π 6= π0

Option 2: H0 : π = π0 vs H1 : π < π0

Option 3: H0 : π = π0 vs H1 : π > π0

Step 2: Specify the level of significance α and obtain the critical value. The critical value is
zα/2 for a two sided test and zα for a one sided test.

Step 3: The Wald test statistic defined as:

Z =
p− π√
p(1− p)/n

∼ N (0, 1).

Step 4: Decision: H0 can be rejected if |zcal| > zcrt or p-value< α.

Step 5: Conclusion.

Example 9.1. Of 1464 HIV/AIDS patients under HAART treatment in Jimma University
Specialized Hospital from 2007-2011, 331 defaulted. Did the proportion of defaulter patients
different from one fourth?

Solution: Let π denote the proportion of defaulter patients. The sample proportion of
defaulters is p = 331

1464 = 0.226. For a sample of size n = 1464, the estimated standard error

of p is ŜE(P ) =
√

0.226(1− 0.226)/1464 = 0.011.

Step 1: Hypothesis:

H0 : π = 0.25 The proportion of defaulter patients is not significantly different from
25%.

H1 : π 6= 0.25 The proportion of defaulter patients is significantly different from 25%.

Step 2: Assuming α = 0.05, the critical value is z0.025 = 1.96

Step 3: The calculated value of the Wald test statistic is:

z =
p− π√
p(1− p)/n

=
0.226− 0.25√

0.226(1− 0.226)/1464
= −2.18

Step 4: Decision: Since |z| = 2.18 > 1.96, H0 can be rejected. Or it is easy to find the
two-sided p-value which is the probability that the absolute value of a standard normal
variate exceeds 2.18, that is, p− value = 2P (Z > 2.18) = 2(0.0146) = 0.0292.

Step 5: Conclusion: Since, the one-sided p-value is 0.0146, there is a strong evidence that,
π < 0.25, that is, the proportion of defaulter patients is fewer than a quarter at 5%
level of significance.
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The Score Test

The Score test is an alternative possible test which uses a known standard error. This known
standard error is obtained by substituting the assumed value under the null hypothesis π0.
That is, σ̂P =

√
π0(1− π0)/n. Hence, the Score test statistic for a binomial proportion is:

Z =
P − π√

π0(1− π0)/n
∼ N (0, 1).

Example 9.2. Recall example 9.1. Test the hypothesis using the Score test.

Solution: Let π denote the proportion of defaulter patients. The sample proportion of
defaulters is p = 331

1464 = 0.226. For Score test, the known standard error of P is ŜE(P ) =√
0.25(1− 0.25)/1464 = 0.0113.

Step 1: Hypothesis:

H0 : π = 0.25 The proportion of defaulter patients is not significantly different from
25%.

H1 : π 6= 0.25 The proportion of defaulter patients is significantly different from 25%.

Step 2: Assuming α = 0.05, the critical value is z0.025 = 1.96

Step 3: The calculated value of the Score test statistic is:

z =
p− π√

π0(1− π0)/n
=

0.226− 0.25√
0.25(1− 0.25)/1464

= −2.12

Step 4: Decision: Since |z| = 2.12 > 1.96, H0 should be rejected. Also, the two-sided p-value
is 2P (Z > 2.12) = 2(0.0170) = 0.034 which leads to the rejection of H0.

Step 5: Conclusion: There is a strong evidence that, π < 0.25, that is, the proportion of
defaulter patients is fewer than a quarter at 5% level of significance..

9.1.2 Interval Estimation for a Population Proportion π

Wald CI: The (1 − α)100% (Wald) confidence interval for the population proportion π is
given by: [

p± zα/2

√
p(1− p)

n

]
.

This is a large sample confidence interval for the population proportion π which uses the
sample proportion p as the mid-point of the interval.

Example 9.3. Recall example 9.1. Construct the 95% CI for the population proportion of
HIV/AIDS patients who were defaulted.

Solution: For n = 1464 observations, p = 0.226. And zα/2 = z0.025 = 1.96. The 95%

confidence interval is [0.226± 1.960.226(1−0.226)
1464 ] = (0.204, 0.248). Therefore, the proportion of

HIV/AIDS patients who were defaulted is between 0.204 and 0.248 at 0.05 level of significance.
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Note: The Wald confidence interval for π is based on a normal approximation to the binomial
distribution. The rule is that both nπ and nπ(1−π) should be at least 5. Unless π is close to
0.50, it does not work well if n is not very large. That is, it works poorly to use the sample
proportion as the mid-point of the confidence interval when π is near 0 or 1.

Score CI: The Score confidence interval uses a duality with significance tests. It is con-
structed by inverting results of a significance test using the null standard error. This con-
fidence interval consists of all values π0’s for the null hypothesis parameter that are ’not
rejected’ at a given significance level.

For a binomial proportion, given n and p with a critical value ±zα/2, the π0 solutions for the
equation

|p− π0|√
π0(1− π0)/n

= ±zα/2

are the end points of the Score confidence interval for π. Squaring both sides gives an equation
which is quadratic in π0. This method does not require estimation of π in the standard error,
since the standard error in the test statistic uses the null value π0.

Example 9.4. A clinical trial is conducted to evaluate a new treatment. This experiment
has nine successes in the first 10 trials. Construct the 95% Score and Wald CIs.

Solution: The sample proportion of successes p = 0.90 based on n = 10 trials. The solutions
for n(p−π0)2 = π0(1−π0)z2

α/2 are 0.596 and 0.982. Thus, the 95% Score CI is (0.596, 0.982).

By contrast, using the estimated standard error gives confidence interval (0.714, 1.086) in
which the upper limit is greater than 1. That is why, it is said Wald CI works poorly when
the parameter may fall near the boundary values of 0 or 1.

Example 9.5. Of n = 16 students, y = 0 answered ”yes” for the question ”Did you ever
smoke cigarette?”. Construct the 95% Wald and Score confidence intervals for the population
proportion of smoker students.

Solution: Let π be the population proportion of smoker students. Since y = 0, p = 0
16 = 0.

The 95% Wald CI is given by (p± zα/2
√
p(1− p)/n) = (0± 1.96

√
0(1− 0)/16) = (0, 0). As

said before when the number of successes is near 0 or near n, Wald methods do not provide
sensible results.

The 95% Score confidence interval is obtained by solving |0−π0| = ±1.96
√
π0(1− π0)/16 for

π0. By contrast this provides the interval (0, 0.316) which is sensible than the Wald interval
(0, 0).

9.2 Comparing Two Population Proportions

For comparisons of two population proportions, independent random samples are assumed to
be drawn from two binomial populations with parameters π1 and π2. If y1 is the number of
successes to be observed for a random sample of size n1 from population (group) 1 and y2

is the number of successes to be observed for a random sample of size n2 from population
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(group) 2, then the point estimators of π1 and π2 are the sample proportions p1 = y1
n1

and
p2 = y2

n2
, respectively.

The interest is whether the two population proportions are equal π1 = π2, that is, whether
the difference between the two population proportions (absolute risk) is zero π1 − π2 = 0.
The point estimator of the difference of the population proportions π1 − π2 is p1 − p2. The
mean of the sampling distribution of the difference of the sample proportions p1 − p2 is
E(p1− p2) = µp1−p2 = π1− π2. The variance of the sampling distribution of the difference of

the population proportions p1− p2 is also given as V (p1− p2) = σ2
p1−p2 = π1(1−π1)

n1
+ π2(1−π2)

n2
.

Thus, p1 − p2 ∼ N
[
π1 − π2,

π1(1−π1)
n1

+ π2(1−π2)
n2

]
.

The standard error is SE(p1 − p2) = σp1−p2 =
√

π1(1−π1)
n1

+ π2(1−π2)
n2

. The estimated standard

error is ŜE(p1 − p2) = σ̂p1−p2 =
√

p1(1−p1)
n1

+ p2(1−p2)
n2

.

9.2.1 Testing for Difference of Two Population Proportions

Step 1: State both the null and alternative hypotheses. There three possible options are:

Option 1: H0 : π1 − π2 = 0 vs H1 : π1 − π2 6= 0

Option 2: H0 : π1 − π2 = 0 vs H1 : π1 − π2 < 0

Option 3: H0 : π1 − π2 = 0 vs H1 : π1 − π2 > 0

Step 2: Specify the level of significance α and obtain the critical value. The critical value
for a two sided test is zα/2 whereas the critical value for a one sided test is zα.

Step 3: Use the z test statistic and obtain its calculated value:

Z =
(p1 − p2)− (π1 − π2)√

p1(1−p2)
n1

+ p2(1−p2)
n2

∼ N (0, 1).

Step 4: Decision: If |zcal| > ztab (p− value < α), H0 can be rejected.

Step 5: Conclusion.

Example 9.6. A study looked at the effects of OC use on heart disease in women 40-44
years of age. The researchers found that among 50 current OC users at baseline, 13 women
developed a myocardial infarction (MI) over a 3 year period, whereas among 100 non-OC
users, 7 developed an MI over a 3-year period. Assess the statistical significance of the results.

Solution: Let π1 be the proportion of MI among OC users and π2 be the proportion of MI
among non-OC users. The sample proportion of MI among OC users is p1 = 13

50 = 0.26 and
the sample proportion of MI among non-OC users is p2 = 7

100 = 0.07.

Step 1: Hypothesis:

H0 : π1 − π2 = 0. The proportions of MI among OC users and non-OC users are not
significantly different. That is, OC has not a significant effect.

140

mailto:es.awol@gmail.com


Bio/Statistics- SPHM 5011 c© 2021 By: Awol S., E-mail: es.awol@gmail.com

H1 : π1 − π2 6= 0. The proportions of MI among OC users and non-OC users are signif-
icantly different. That is, OC has a significant effect.

Step 2: Assuming α = 0.05, z0.025 = 1.96.

Step 3: The calculated value of the z test statistic is:

z =
(p1 − p2)− (π1 − π2)√

p1(1−p2)
n1

+ p2(1−p2)
n2

=
(0.26− 0.07)− 0√

0.26(1−0.26)
50 + 0.07(1−0.07)

100

=
0.19

0.067
= 2.836

Step 4: Decision: Since zcal = 2.836 > z0.025 = 1.96, H0 can be rejected. Or p−value
= 2× P [Z > 2.836] = 2× 0.0023 = 0.0046 < α = 0.05.

Step 5: Conclusion. The proportions of MI among OC users and non-OC users are signif-
icantly different at 5% level of significance. That is, OC use has a significant positive
effect to develop MI at 5% level of significance.

9.2.2 Interval Estimation for π1 − π2

The (1 − α)100% confidence interval for the difference of the two population proportions
π1 − π2 are given by: (p1 − p2)± zα/2

√
p1(1− p1)

n1
+
p2(1− p2)

n2

 .

Example 9.7. Consider again example 9.6 and construct the 95% confidence interval for the
difference in the proportions of MI between OC and non-OC users.

Solution: The 95% confidence interval for the difference in the proportions of MI between
OC and non-OC users π1 − π2 is:{

(0.26− 0.07)± 1.96

√
0.26(1− 0.26)

50
+

0.07(1− 0.07)

100

}
= (0.059, 0.321).

Since the confidence interval is greater than 0, OC use has a significant positive effect to
develop MI at 5% level of significance.

9.3 Contingency Table Method

Let X and Y denote two categorical variables with I and J categories (levels), respectively.
Then, classifications of subjects on both variables have IJ possible combinations and the
contingency table is called a two-way table or an I × J (read as I-by-J) table.

Suppose N subjects are classified on both X and Y as shown in Table 9.1. Then Nij represents
the number of subjects belonging to the ith category of X and jth category of Y .
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Table 9.1: Layout of an I × J Contingency Table

Y
X 1 2 · · · j · · · J Total

1 N11 N12 · · · N1j · · · N1J N1+

2 N21 N22 · · · N2j · · · N2J N2+
...

...
...

. . .
...

...
...

...
i Ni1 Ni2 · · · Nij · · · NiJ Ni+
...

...
...

...
...

. . .
...

...
I NI1 NI2 · · · NIj · · · NIJ NI+

Total N+1 N+2 · · · N+j · · · N+J N

Here, Ni+ and N+j are the marginal totals representing the number of subjects belonging to

the ith category of X and the jth category of Y , respectively. Note that Ni+ =
J∑
j=1

Nij and

N+j =
I∑
i=1

Nij . Also, the population size N =
I∑
i=1

Ni+ =
J∑
j=1

N+j =
I∑
i=1

J∑
j=1

Nij .

9.3.1 Probability Structures for Contingency Tables

The joint probability distribution of the responses (X,Y ) of a subject chosen randomly from
some population can be determined from the contingency table. This joint distribution de-
termines the relationship between the two categorical variables. Also, from this distribution,
the marginal and conditional distributions can be determined.

Joint and Marginal Probabilities

The (true) probability of a subject being in the ith category of X and jth category of Y is

P (X = i, Y = j) = πij =
Nij

N
.

The probability distribution {πij} is the joint distribution of X and Y shown in Table 9.2.
The marginal distribution of each variable is the sum of the joint probabilities over all the
categories of the other variable. That is,

P (X = i) = πi+ =

J∑
j=1

πij =
Ni+

N
and P (Y = j) = π+j =

I∑
i=1

πij =
N+j

N
.
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Table 9.2: Joint and Marginal Distributions X and Y

Y
X 1 2 · · · j · · · J Total

1 π11 π12 · · · π1j · · · π1J π1+

2 π21 π22 · · · π2j · · · π2J π2+
...

...
...

. . .
...

...
...

...
i πi1 πi2 · · · πij · · · πiJ πi+
...

...
...

...
...

. . .
...

...
I πI1 πI2 · · · πIj · · · πIJ πI+

Total π+1 π+2 · · · π+j · · · π+J 1

Thus, {πi+} is the marginal distribution of X and {π+j} is the marginal distribution of Y. The

marginal distributions provide single-variable information. Note also that
I∑
i=1

πi+ =
J∑
j=1

π+j =

I∑
i=1

J∑
j=1

πij = 1.

Conditional Probabilities

The joint distribution of X and Y is more useful if both variables are responses. But if one
of the variable is explanatory (fixed), the notion of the joint distribution is no longer useful.

If X is fixed, for each category of X, Y has a probability distribution. Hence, it is important
to study how the distribution of Y changes as the category of X changes.

Given that a subject is belong to the ith category of X, then

P (Y = j|X = i) = πj|i =
πij
πi+

denotes the conditional probability of that subject belonging to the jth category of Y . In
other words, πj|i is the conditional probability of a subject being in the jth category of Y if

it is in the ith category of X. Thus, {πj|i; j = 1, 2, · · · , J} is the conditional distribution of

Y at the ith category of X. Note also that
J∑
j=1

πj|i = 1.
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Table 9.3: Conditional Distributions of Y Given X

Y
X 1 2 · · · j · · · J Total

1 π1|1 π2|1 · · · πj|1 · · · πJ |1 1

2 π1|2 π2|2 · · · πj|2 · · · πJ |2 1
...

...
...

. . .
...

...
...

...
i π1|i π2|i · · · πj|i · · · πJ |i 1
...

...
...

...
...

. . .
...

...
I π1|I π2|I · · · πj|I · · · πJ |I 1

The probabilities {π1|i, π2|i, · · · , πj|i, · · · , πJ |i} form the conditional distribution of Y at the

ith category of X. A principal aim in many studies is to compare the conditional distribution
of Y at various level of X.

Example 9.8. In the HAART Data used by ?, there were 1464 HIV/AIDS patients. Of
these 22.6% were defaulters. 63.5% of these patients were females including 189 defaulters.

1. Construct the contingency table.

2. Find the joint and marginal distributions.

3. If a patient is selected at random, what is the probability that the patient is

(a) a female and defaulter?

(b) a male?

(c) defaulter if the patient is female?

Solution:

1. The contingency table is

Defaulter
Gender Yes (1) No (2) Total

Female (1) N11 = 189 N12 = 741 N1+ = 930
Male (2) N21 = 142 N22 = 392 N2+ = 534

Total N+1 = 331 N+2 = 1133 N = 1464

2. The joint and marginal distributions are

Defaulter
Gender Yes (1) No (2) Total

Female (1) π11 = 0.129 π12 = 0.506 π1+ = 0.635
Male (2) π21 = 0.097 π22 = 0.268 π2+ = 0.365

Total π+1 = 0.226 π+2 = 0.774 1.000

3. If a patient is selected at random,
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(a) P (Gender = 1,Defaulter = 1) = N11
N = 189

1464 = 0.1291.

(b) P (Gender = 2) = N2+

N = 534
1464 = 0.3648.

(c) P (Defaulter = 1|Gender = 1) = N11
N1+

= 189
930 = 0.2032.

9.3.2 Statistical Independence

Statistical independence is a condition of no relationship between two variables in a popu-
lation. In probability terms, two categorical variables are defined to be independent if all
joint probabilities are the product of their marginal probabilities. That is, if X and Y are
independent then πij = πi+π+j for all i and j.

Also, when X and Y are independent, each conditional distribution of Y is identical to the
marginal distribution of Y . That is, πj|i = π+j for all i. Thus, two categorical variables are
independent when πj|1 = πj|2 = · · · = πj|I for j = 1, 2, · · · , J ; that is, the probability of any
category of Y is the same in each category of X which is often referred as homogeneity of
conditional distributions. This is a more better definition of independence than πij = πi+π+j

when one of the variables is explanatory.

Example 9.9. Recall example 9.9. Are the sex of the patient and defaulting statistically
independent? The answer is No. Why?

9.4 Chi-squared Tests of Independence

For a multinomial sampling with probabilities πij in an I × J contingency table, the null
hypothesis of statistical independence is H0 : πij = πi+π+j for all i and j. For independent
multinomial samples, independence corresponds to homogeneity of each outcome probability
among the categories of the fixed variable. The marginal probabilities then determine the
joint probabilities.

Under H0 : πij = πi+π+j , the expected values of cell counts are {µij = nπi+π+j}. That
is, µij is the expected number of subjects in the ith category of X and jth category of Y .
Since {πi+} and {π+j} are unknown, their maximum likelihood estimates, respectively, are{
pi+ = ni+

n

}
and

{
p+j =

n+j

n

}
. which are the sample marginal proportions. Hence, the

estimated expected frequencies are
{
µ̂ij = npi+p+j =

ni+n+j

n

}
.
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Table 9.4: Observed and Expected Frequencies in an I × J Table

Y
X 1 2 · · · j · · · J Total

1 n11 (µ̂11) n12 (µ̂12) · · · n1j (µ̂1j) · · · n1J (µ̂1J) n1+

2 n21 (µ̂21) n22 (µ̂22) · · · n2j (µ̂2j) · · · n2J (µ̂2J) n2+
...

...
...

. . .
...

...
...

...
i ni1 (µ̂i1) ni2 (µ̂i2) · · · nij (µ̂ij) · · · niJ (µ̂iJ) ni+
...

...
...

...
...

. . .
...

...
I nI1 (µ̂I1) nI2 (µ̂I2) · · · nIj (µ̂Ij) · · · nIJ (µ̂IJ) nI+

Total n+1 n+2 · · · n+j · · · n+J n

9.4.1 The Chi-square Test Statistic

The Pearson chi-squared statistic for testing independence of two categorical variables is
defined as:

X2 =
I∑
i=1

J∑
j=1

(nij − µ̂ij)2

µ̂ij
∼ χ2[(I − 1)(J − 1)].

Step 1: Hypothesis:

H0 : πij = πi+π+j ∀i, j. The two variables have no significant association.

H1 : not H0. The variables are significantly associated.

Step 2: Obtain the critical value χ2
α[(I − 1)(J − 1)].

Step 3: The calculated value of the X2 test statistic is:

X2 =

I∑
i=1

J∑
j=1

(nij − µ̂ij)2

µ̂ij
.

Step 4: Decision: If X2
cal > χ2

α[(I − 1)(J − 1)], the null hypothesis H0 of no statistical
association can be rejected. Or if p − value = P (χ2[(I − 1)(J − 1)] > X2

cal) is smaller
than α, H0 can be rejected.

Step 5: Conclusion.

9.4.2 The Likelihood-Ratio Test Statistic

The likelihood-ratio test statistic is an alternative test for independence that uses likelihood
values. A likelihood-ratio statistic is defined as G2 = −2 log(`0/`1) where `0 is the maximized
value of the likelihood function under H0 and `1 is the maximized value of the likelihood
function in general. Therefore, the likelihood-ratio test statistic for independence can be
easily derived as

G2 = 2

I∑
i=1

J∑
j=1

nij log

(
nij
µ̂ij

)
∼ χ2[(I − 1)(J − 1)].
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When H0 holds, the Pearson X2 and likelihood-ratio G2 statistics both have asymptotic chi-
squared distributions with [(I − 1)(J − 1)] degrees of freedom. For a better approximation,
the general rule is that the smallest expected frequency should be at least 5. In general, if
more than 20% of the expected frequencies are less than 5, the approximation worsens (that
is, the test is not valid).

Example 9.10. The table below shows the distribution of HIV/AIDS patients by the survival
outcome (active, dead, transferred to other hospital and lost-to-follow) and gender.

Survival Outcome
Gender Active Dead Transferred Lost-to-follow Total

Female 741 25 63 101 930
Male 392 20 52 70 534

Total 1133 45 115 171 1464

Test whether or not the survival outcome depends on gender using both the Pearson chi-square
and likelihood-ratio tests.

Solution: First let us find the expected cell counts, µ̂ij =
ni+n+j

n
.

Survival Outcome
Gender Active Dead Transferred Lost-to-follow Total

Female 741 (719.7) 25 (28.6) 63 (73.1) 101 (108.6) 930
Male 392 (413.3) 20 (16.4) 52 (41.9) 70 (62.4) 534

Total 1133 45 115 171 1464

Step 1: Hypothesis:

H0 : πij = πi+π+j ∀i, j. Survival outcome and gender have no significant association.

H1 : not H0. Survival outcome depends on gender.

Step 2: The critical value χ2
α[(2− 1)(4− 1)] = χ2

0.05(3) = 7.8147.

Step 3: The calculated value of the X2 and G2 test statistics, respectively, are:

X2 =
I∑
i=1

J∑
j=1

(nij − µ̂ij)2

µ̂ij
=

(741− 719.7)2

719.7
+

(25− 28.6)2

28.6
+ · · ·+ (70− 62.4)2

62.4

= 8.2172

and

G2 = 2
I∑
i=1

J∑
j=1

nij log

(
nij
µ̂ij

)
= 2

[
741 log

(
741

719.7

)
+ 25 log

(
25

28.6

)
+ · · ·+ 70 log

(
70

62.4

)]
= 8.0720

Step 4: Decision: Since both statistics have larger values than χ2
0.05(3) = 7.8147, the null

hypothesis H0 can be rejected. Also, p− value = P (χ2(3) > 8.0720) = 0.0445 suggests
rejection of no association between the two variables.
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Step 5: Conclusion: The survival outcome of patients depends on gender at 5% level of
significance.

9.5 Measuring Strength of Association

There are many situations where both the independent and dependent variables have two
levels. Let X (explanatory) and Y (response) be binary variables. The data can be displayed
in a 2 × 2 contingency table in which the rows are the levels of X and the columns are the
levels of Y . Let us use the generic terms success and failure for the outcome categories of Y .

Y
X Success (1) Failure (2) Total

1 N11 N12 N1+

2 N21 N22 N2+

Total N+1 N+2 N

For each category i; i = 1, 2 of X, P (Y = j|X = i) = πj|i; j = 1, 2. Then, the conditional
probability structure is as follows.

Y
X Success (1) Failure (2) Total

1 π1|1 π2|1 1

2 π1|2 π2|2 1

Here, π1|1 and π1|2 are the proportions of successes in category 1 and 2 of X, respectively.
From now onwards, let us use π1 and π2 are the proportions of successes in category 1 and 2
of X, respectively.

Y
X Success (1) Failure (2) Total

1 π1 π′1 1
2 π2 π′2 1

In chi-square test, the question of interest is whether there is a statistical association between
the explanatory (X) and the response (Y ) variables. The hypothesis to be tested is

H0 : π1 = π2 (There is no association between X and Y )

H1 : π1 6= π2 (There is an association between X and Y )

A significant chi-squared test merely tells the existence of the association between the vari-
ables. If an association exists, the next task is identifying the category of X which has a
larger (smaller) proportion of successes. This can be done by calculating the difference of
proportions, a relative risk and an odds ratio.

9.5.1 Difference of Proportions (Absolute Risk)

The difference of proportions (absolute risk) is a simple procedure which compares the prob-
ability of success between two groups. It is calculated as π1 − π2. It is interesting that the
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difference in proportions ranges between -1 and +1. If π1 − π2 ≈ 0, the proportion of suc-
cesses in both categories of X are almost the same (0 is a baseline for comparison). That is,
if π1 − π2 ≈ 0, categories of X have identical conditional distributions. On the contrary, if
π1−π2 ≈ ±1, the association between X and Y is strong (indicates a high level of association).

Let p1 and p2 be the sample proportion of successes in category 1 and 2 of X, respectively.
The difference of the sample proportion of successes p1 − p2 estimates the difference of the
population proportion of successes π1 − π2. (Details are already discussed in Section 9.5.1).

Example 9.11. An educational researcher designs a study to compare the effectiveness of
teaching English to non-English speaking people by a computer software program and by the
traditional classroom system. The researcher randomly assigns 35 students from a class of
100 to instruction using the computer. The remaining 65 students are instructed using the
traditional method. At the end of a 6-month instructional period, all 100 students are given
an examination with the results reported in the following table.

Examination Result
Instruction Method Pass Fail Total

Traditional 45 20 65
Computer 32 3 35

Total 77 23 100

Find the difference of the pass proportions and interpret. Also test the significance using the
95% confidence interval.

Solution: The conditional probabilities for each instruction method are shown in the follow-
ing table.

Examination Result
Instruction Method Pass Fail Total

Traditional p1 = 0.692 p′1 = 0.308 1
Computer p2 = 0.914 p′2 = 0.086 1

The difference in the sample pass proportions is p1 − p2 = 0.692− 0.914 = −0.222. Since the
difference is less than 0, computer instruction seems to be a better way to improve the aca-
demic performance of students in English course. The probability of passing in the traditional
instruction method decreases by 0.222 as compared to passing in the computer instruction
method. Or, the probability of passing in the computer instruction method increases by 0.222
as compared to passing in the traditional instruction method.

The 95% confidence interval for the difference in the pass proportions between the traditional
and computer instruction methods π1 − π2 is[

(0.692− 0.914)± 1.96

√
0.692(1− 0.692)

65
+

0.914(1− 0.914)

35

]
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= (−0.222±
√

0.0033 + 0.022) = (−0.222± 0.0742) = (−0.2962,−0.1478).

Thus, since the confidence interval is less than 0, the difference of the pass proportions in the
two instruction methods is significantly different (particularly computer instruction is better
than traditional instruction). Specifically, the probability of passing in the traditional instruc-
tion method decreases by between 0.1478 and 0.2962 at 5% significance level as compared to
passing in the computer instruction method.

9.5.2 Relative Risk

Relative risk is the ratio of the probability of successes in two groups. That is,

r =
π1

π2
=

N11N12

N1+N2+
.

The value of a relative risk is non-negative, that is, r ≥ 0. If r ≈ 1, the proportion of successes
in the two categories of X are approximately the same. This corresponds to independence
or it is baseline for comparison. On the other hand, values of the relative risk r farther from
1 in a given direction represent stronger association. A relative risk of 4 is farther from in-
dependence than a relative risk of 2, and a relative risk of 0.25 is farther from independence
than a relative risk of 0.50. Two values for relative risk (for example, 4 and 0.25) represent
the same strength of association, but in opposite directions, when one value is the inverse of
the other.

The sample relative risk r̂ = p1
p2

estimates the population relative risk r.

Example 9.12. Find the relative risk for the data given on example 9.11 and interpret it.

Solution: The conditional probabilities for each instruction method are shown in the follow-
ing table.

Examination Result
Instruction Method Pass Fail Total

Traditional p1 = 0.692 p′1 = 0.308 1
Computer p2 = 0.914 p′2 = 0.086 1

The estimate of the relative risk is r̂ = p1
p2

= 0.692
0.914 = 0.757. It can be interpreted as follows:

• The proportion of passing in the traditional instruction method is 0.757 times the
proportion of passing in the computer instruction method.

• The traditional instruction method reduces the probability of passing by (1− r̂)100% =
(1− 0.757)100% = 24.3% relative to computer instruction method.

• Or, by inverting, the probability of passing in the computer instruction method is 1.321
times the probability of passing in the traditional instruction method.

• This means, computer instruction method (relative to traditional instruction method)
increases the probability of passing the exam by (r̂−1)100% = (1.321−1)100% = 32.1%.
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Note: Relative risk is a widely reported measure of association between exposure status and
disease state for prospective studies (cohort and randomized clinical trials). In such case, the
levels of the explanatory variable are being exposed (E) and being unexposed (E′), and the
levels of the response variable are having a disease (D) and not-having a disease (D′).

Disease
Exposure Present (D) Absent (D′) Total

Exposed (E) n11 n12 n1+

Unexposed (E′) n21 n22 n2+

Total ? ? n

For this particular case, relative risk is a ratio of the probability of having a disease among
those exposed to the probability of having the disease among those unexposed:

r =
P (D|E)

P (D|E′)
.

• A relative risk of 1.0 implies that the risk of a disease is the same in both exposed and
unexposed groups (no association between the exposure and the disease).

• A relative risk greater than 1.0 implies the exposed group have a higher probability of
having a disease than the unexposed group (the exposure is a risk factor).

• A relative risk less than 1.0 implies that the exposed group has a lower chance of having
disease than unexposed group (it is expected in drug efficacy studies, the exposure is a
protective factor).

Testing for a Relative Risk

To infer about a relative risk r, the sampling distribution of the sample relative risk r̂ should
be determined. The values of the relative risk are highly skewed to the right. As a result, by
taking the logarithm of r̂, it turns out that log(r̂) is approximately normally distributed for
large values of n. If the probability of successes are approximately equal in the two groups,
then r = 1 or log(r) = 0 indicating no statistical association between the two variables.

The standard error of log(r̂) is determined to be:

SE[log(r̂)] =

√
1

N11
− 1

N1+
+

1

N21
− 1

N2+

which can be estimated by:

ŜE[log(r̂)] =

√
1

n11
− 1

n1+
+

1

n21
− 1

n2+
.

Step 1: Hypothesis:

H0 : log(r) = 0 The two variables have no significant association.

H1 : log(r) 6= 0 The two variables are significantly associated.
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Step 2: Obtain the critical value zα/2.

Step 3: Under H0 : log(r) = 0, for large values of n the test statistic is defined as:

Z =
log(r̂)− log(r)

ŜE[log(r̂)]
∼ N (0, 1).

Step 4: Decision: If |zcal| > zα/2, H0 should be rejected.

Step 5: Conclusion.

Example 9.13. Test the significance of the relative risk for the data given on example 9.11.

Solution: The estimate of the relative risk is r̂ = p1
p2

= 0.692
0.914 = 0.757 which implies log(r̂) =

log(0.757) = −0.2784 and the estimated standard error of log(r̂) is ŜE[log(r̂)] = 0.0975.

Step 1: Hypothesis:

H0 : r = 1⇒ log(r) = 0. Instruction method and exam result have no significant asso-
ciation.

H1 : r 6= 1⇒ log(r) 6= 0. Instruction method and exam result have a significant associ-
ation.

Step 2: Using α = 0.05, the critical value is z0.025 = 1.96.

Step 3: The calculated value of the z test statistic is:

z =
log(0.757)− 0√
1
45 −

1
65 + 1

32 −
1
35

= −2.86.

Step 4: Decision: Since |zcal| = 2.86 > z0.025 = 1.96, H0 should be rejected.

Step 5: Conclusion: Therefore, the relative risk is significantly different from 1. Instruction
method has a significant effect on examination result at 5% significance level. Specifi-
cally, the computer instruction method has a positive effect in passing the examination.

Confidence Interval for a Relative Risk

The (1− α)100% confidence interval for the log of a relative risk log(r) is given by

{log(r̂)± zα/2ŜE[log(r̂)]}.

Taking the exponentials of the end points this confidence interval provides the confidence
interval for a relative risk r, that is,

exp{log(r̂)± zα/2ŜE[log(r̂)]}.

Example 9.14. An efficacy study was conducted for the drug pamidronate in patients with
Paget’s disease of bone. In this randomized clinical trial, patients were assigned at random
to receive either pamidronate (E) or placebo (E′). One end point was the occurrence of any
skeletal events after 9 cycles of treatment D and non-occurrence D′. The results are given in
the following table.
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Skeletal Event
Exposure Yes (D) No (D′) Total

Pamidronate (E) 47 149 196
Placebo (E′) 74 107 181

Total 121 256 377

Compute a 95% confidence interval for the relative risk of suffering skeletal events (in a time
period of this length) for patients on pamidronate relative to patients not on the drug.

Solution: Let π1 = P (D|E) and π2 = P (D|E′). Thus, the estimated probability of pa-
tients suffering skeletal events among those receiving the drug, and among those receiving the
placebo are p1 = 47

196 = 0.240 and p2 = 74
181 = 0.409, respectively.

Then, the estimated relative risk r is r̂ = 0.240
0.409 = 0.587 and its log value is log(r̂) = −0.533.

The estimated standard error of log of the estimated relative risk log(r̂) is ŜE[log(r̂)] =√
1
47 −

1
196 + 1

74 −
1

181 = 0.155.

The 95% confidence interval for the log of the relative risk log(r) is −0.533 ± 1.96(0.155) =
(−0.837, −0.229). Therefore, the 95% confidence interval for the relative risk r is

{exp(−0.837), exp(−0.229)} = (0.433, 0.795).

Thus, the relative risk of suffering a skeletal event (in this time period) for patients on
pamidronate (relative to patients not on pamidronate) is between 0.433 and 0.795 at 5%
significance level. Since this entire interval is below 1, it can be concluded that pamidronate
is effective in reducing the risk of skeletal events. Furthermore, pamidronate reduces the risk
of skeletal events by (1− r̂)100% = (1− 0.587)100% = 41.3%.

9.5.3 Odds Ratio

Before defining an odds ratio, let us define what an odds is? An odds (Ω) is the ratio of the
probability of success to the probability of failure in a particular group.

Ω =
p(success)

p(failure)
=

π

1− π
=

number of successes

number of failures

Like a relative risk, an odds is a nonnegative number (0 ≤ Ω < ∞). If Ω = 1, a successes is
as likely as a failure. If Ω < 1, a success is less likely and if Ω > 1, a success is more likely to
occur than a failure. Inversely,

π =
Ω

1 + Ω
.

Odds ratio is the ratio of two odds. For a 2 × 2 table, for each group i of X, the odds of
successes (instead of failures) is

Ωi =
πi

1− πi
=
πi
π′i

; i = 1, 2.

Thus, the odds ratio is

θ =
Ω1

Ω2
=
π1π

′
2

π2π′1
=
N11N22

N12N21
=
π11π22

π12π21
.
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Like a relative risk and an odds, an odds ratio is also non negative, that is, θ ≥ 0. An odds ra-
tio of 1 implies independence of X and Y which is a baseline for comparison. If it larger than 1
(Ω1 > Ω2), a success is more likely to occur in category 1 of X than in category 2. If the odds
ratio is near zero (Ω1 < Ω2), then a success is less likely to occur in category 1 than category 2.

Similar to a relative risk, values of an odds ratio θ farther from 1 in a given direction represent
stronger association, that is, an odds ratio of 6 is farther from independence than an odds
ratio of 2, and an odds ratio of 0.20 is farther from independence than an odds ratio of 0.60.
Also, two values for odds ratio, when one value is the inverse of the other (for example, 5 and
0.20) represent the same strength of association, but in opposite directions.

The sample odds ratio θ̂ is used to estimate the population odds ratio θ which is given by

θ̂ =
Ω̂1

Ω̂2

=
n11n22

n12n21
=
p11p22

p12p21
.

Example 9.15. Again recall example 9.11. Find the odds ratio and interpret.

Solution: The estimated probability of passing in the traditional instruction method is
p1 = 0.692. Then, the estimated odds of passing in this group is Ω̂1 = 0.692

1−0.692 = 2.247 which
means the probability of passing in the traditional instruction group is 2.247 times the prob-
ability of failing in that group.

Similarly, the estimated probability of passing in the computer instruction group is p2 = 0.914.
Hence, the estimated odds of passing in this group is Ω̂2 = 0.914

1−0.914 = 10.628 which means
the probability of passing in the computer instruction group is 10.627 times the probability
of failing.

Therefore, the odds ratio of passing the exam (instead of failing) is the ratio of the odds
of passing in the traditional instruction method to the odds of passing in the computer

instruction group, that is, θ̂ = Ω̂1

Ω̂2
= 2.247

10.628 = 0.211. This value can be interpreted in different

ways as follows.

• The odds of passing (instead of failing) the exam in the traditional instruction method
is 0.211 times the odds of passing in the computer instruction method.

• The odds of passing (instead of failing) in the traditional instruction group decreases by
a factor of 0.211 relative to the odds of passing in the computer instruction group.

• That is, the odds of passing (instead of failing) in the traditional instruction group is
(1− θ̂)100% = (1−0.211)100% = 78.9% lower than the odds of passing in the computer
instruction group.

• Those in the traditional instruction method group are 0.211 times less likely to pass the
exam (instead of failing) than those in the computer instruction group.

• Or inversely, the odds of passing (instead of failing) the exam in the computer instruction
group is 4.739 times the odds of passing in the traditional instruction group.
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• The odds of passing (instead of failing) the exam in the computer instruction group
increases by a factor of 4.739 as compared to those in the traditional instruction group.

• This means, the odds of passing (instead of failing) the exam in the computer instruction
method is (θ̂− 1)100% = (4.739− 1)100% = 373.9% higher than the odds of passing in
the traditional instruction group.

• Those in the computer instruction group are 4.739 times more likely to pass the exam
(instead of failing) than those in the traditional instruction method group.

Example 9.16. Given the following contingency table for the variable ”death penalty for
crime”.

Race
Penalty Blacks Nonblacks Total

Death Sentence 28 22 50
Life Imprisonment 45 52 97

Total 73 74 147

Find the odds of receiving a death sentence and interpret. Also, calculate the odds ratio for
receiving a death penalty and interpret.

Solution: The estimated probability of receiving a death sentence is 50
147 = 0.34 (34%). Then,

the estimated odds of receiving a death sentence (instead of a life imprisonment sentence)
is 50

97 = 0.516 (51.6%). Receiving a death sentence is half as likely as life imprisonment or
receiving a life imprisonment sentence is twice as likely as receiving a death penalty.

The odds ratio for receiving a death penalty (instead of life imprisonment) is the ratio of the
odds if black to the odds if nonblack. It is estimated as 1.47 which means blacks are 1.47 times
more likely to receive a death sentence (instead of life imprisonment) than nonblacks. This
means, the risk (odds) of death sentence (instead of life imprisonment) for blacks increases
by a factor of 1.47 as compared to nonblacks. Or the risk (odds) of death sentence for blacks
are 47% higher than the risk (odds) of a death sentence for nonblacks.

Note: For retrospective (case-control) studies, subjects are identified as cases (D) or controls
(D′), and it is observed whether the subjects had been exposed to the risk factor (E) or
not (E′). Since the samplings are not from the populations of exposed and unexposed, and
observing whether or not disease occurs (as in prospective studies), P (D|E) or P (D|E′),
cannot be estimated.

Disease
Exposure Present (D) Absent (D′) Total

Exposed (E) n11 n12 ?
Unexposed (E′) n21 n22 ?

Total n+1 n+2 n

• If the odds ratio is 1.0, the odds (and thus probability) of disease is the same for both
groups (no association between an exposure and a disease).
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• If the odds ratio is greater than 1.0, the odds (and thus probability) of disease is higher
among exposed than unexposed (the exposure is a risk factor).

• If the odds ratio is less than 1.0, the odds (and thus probability) of disease is lower
among exposed than unexposed (the exposure is a protective factor).

Testing for an Odds Ratio

To infer about an odds ratio θ, the sampling distribution of log(θ̂) is used due to the similar
reasons used for a relative risk. If the odds of successes are equal in the two groups, then
θ = 1 or log(θ) = 0 indicating independence (no statistical association).

The standard error of the log of an odds ratio log(θ̂) can be determined using statistical
theory as:

SE[log(θ̂)] =

√
1

N11
+

1

N12
+

1

N21
+

1

N22

which can be estimated by:

ŜE[log(θ̂)] =

√
1

n11
+

1

n12
+

1

n21
+

1

n22
.

Step 1: Hypothesis:

H0 : OR = 1⇒ log(OR) = 0. The two variables have no significant association.

H1 : OR 6= 1⇒ log(OR) 6= 0. The two variables are significantly associated.

Step 2: Obtain the critical value zα/2.

Step 3: Under H0 : log(θ) = 0, for large values of n the test statistic is defined as:

Z =
log(θ̂)− log(θ)

ŜE[log(θ̂)]
∼ N (0, 1).

Step 4: Decision: If |zcal| > zα/2, H0 can be rejected.

Step 5: Conclusion.

Example 9.17. Test the significance of the odds ratio for the data given at example 9.16.

Solution: It is easily to calculate that θ̂ = 1.47 and log(θ̂) = 0.385. Also, the standard error

of log(θ̂) is ŜE[log(θ̂)] = 0.349.

Step 1: Hypothesis:

H0 : θ = 1⇒ log(θ) = 0. Death penalty and race have no significant association.

H1 : θ 6= 1⇒ log(θ) 6= 0. Death penalty and race have a significant association.

Step 2: Using α = 0.05, the critical value is z0.025 = 1.96.
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Step 3: The calculated value of the Z test statistic is:

z =
log(θ̂)− 0√

1
28 + 1

22 + 1
45 + 1

52

= 1.103.

Step 4: Decision: Since |zcal| = 1.103 < z0.025 = 1.96, H0 cannot be rejected.

Step 5: Conclusion: Therefore, there is not much evidence of association between penalty
for crime and race at 5% significance level.

Confidence Interval for an Odd Ratio

The (1− α)100% confidence interval for an odds ratio θ is given by

exp{log(θ̂)± zα/2ŜE[log(θ̂)]}.

Example 9.18. An epidemiological case-control study was reported, with cases being 537
people diagnosed with lung cancer (D) and controls being made up of 500 people with no lung
cancer (D′). One risk factor measured was whether or not the subject had smoked a cigarette
(a smoker - E, a non-smoker - E′). The following table gives the numbers of subjects falling
in each possible combination.

Lung Cancer
Exposure Yes (D) No (D′) Total

Smoker (E) 339 149 488
Nonsmoker (E′) 198 351 549

Total 537 500 1037

Compute a 95% confidence interval for the population odds ratio, and determine whether or
not cigarette smoking is associated with higher (or possibly lower) odds (and probability) of
developing lung cancer.

Solution: The estimated odds ratio for developing cancer cancer in smokers and non-smokers
is θ̂ = 339(351)

149(198) = 4.03. This implies log(θ̂) = 1.394 and its estimated standard error is

ŜE{log(θ̂)} =
√

1
339 + 1

149 + 1
198 + 1

351 = 0.133. Therefore, the 95% confidence interval for the

odds ratio θ is

{exp[1.394− 1.96(0.133)], exp[1.394 + 1.96(0.133)]} = (3.110, 5.231).

That is, the risk of developing lung cancer is between 3.11 and 5.231 times higher among
smokers than non-smokers at α = 0.05.

Odds Ratios in an I × J Table

For a 2× 2 table, a single number such as an odds ratio can summarize the association. For
an I × J table, it is rarely possible to summarize association by a single number without
some loss of information. However, a set of (I − 1)(J − 1) local odds ratios can describe cer-
tain features of the association (the rest odds ratios can be determined from these odds ratios).
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Consider category i and i + 1 of X, and category j and j + 1 of Y in an I × J contingency
table. Then, the odds ratio:

θij =
NijNi+1,j+1

Ni,j+1Ni+1,j
=
πijπi+1,j+1

πi,j+1πi+1,j
; i = 1, 2, · · · , I − 1, j = 1, 2, · · · , J − 1

compares the probability of category j (instead of j+ 1) of Y in category i of X as compared
to category i+ 1 of X.

As usual, the estimated odds ratio for comparing category j (instead of j + 1) of Y between
category i and i+ 1 of X is:

θ̂ij =
nijni+1,j+1

ni,j+1ni+1,j
=
pijpi+1,j+1

pi,j+1pi+1,j
; i = 1, 2, · · · , I − 1, j = 1, 2, · · · , J − 1.

Independence is equivalent to all odds ratios equal to 1 (that is, non-significance of all odds
ratios).

Example 9.19. Suppose 980 individuals are classified according to their favorite soft drink
preference (Fanta, Coca and Sprite) and gender as shown below.

Soft Drink
Gender Fanta Coca Sprite Total

Females 279 225 73 577
Males 165 191 47 403

Total 444 416 120 980

By looking at the frequencies in the table, guess which gender (male or female) seems more
likely to prefer coca? Why? Find all (local) odds ratios and test their significance.

Solution: The association between gender and soft drink preference can be checked using
the chi-square or likelihood-ratio tests.

Step 1: Hypothesis:

H0 : There is no significant association between soft drink preference and gender.

H1 : Soft drink preference significantly depends on gender.

Step 2: Assuming α = 0.05, the critical value is z0.025 = 1.96.

Step 3: The z test statistic is used for testing each odds ratio:

Fanta versus Coca Fanta versus Sprite Coca versus Sprite

Odds Ratio (θ̂ij)
279(191)
225(165) = 1.435 279(47)

73(165) = 1.089 225(47)
73(191) = 0.758

Log Odds Ratio {log(θ̂ij)} log(1.435) = 0.361 log(1.089) = 0.085 log(0.758) = −0.120

ŜE[log(θ̂ij)] 0.139 0.211 0.211
Test Statistic (z) 2.597 0.402 −0.569

Decision Reject H0 Do not reject H0 Do not reject H0
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Step 4: Decision: Since one of the three odds ratios is significant at 5% significance level,
the null hypothesis of no significant association is rejected.

Step 5: Conclusion: Therefore, there is a significant difference in the preference of Fanta
(instead of Coca) by females as compared to males at 5% level of significance. Hence,
from this analysis, it can be concluded that:

• Females are 1.435 times more likely to prefer Fanta (instead of Coca) than that of
males.

• The odds of preferring Fanta (instead of Coca) by females is 43.5% higher than
that of males.

• Males are 0.697 times less likely to prefer Fanta (instead of Coca) than females.

• The odds of preferring Fanta (instead of Coca) by males is 30.3% lower than that
of females.

9.6 Exact Inference for Small Samples

The inferential methods of the previous sections are all large sample methods. The Pearson
chi-square statistic is only approximated by the chi-square distribution, and that approxima-
tion worsens with small expected frequencies. When there are very small expected frequencies,
the possible values of the chi-square statistic are quite discrete. For example, for a 2×2 table
with only 4 observations in each row and column, the only possible values of chi-square are
8, 2, and 0. It should be clear that a continuous chi-square distribution is not a good match
for a discrete distribution having only 3 values. In such cases, when n is small, alternative
methods use exact distributions rather than large sample approximations.

In this section, small sample test of independence for 2 × 2 tables, which is called Fisher’s
exact inference is discussed. As described in Section ??, in poisson sampling - the sample
size is not fixed unlike multinomial sampling, and in independent multinomial (binomial)
sampling only one set of the marginal totals are fixed. In addition, in a 2 × 2 table, if both
sets of the marginal total are fixed, it yields a hypergeometric distribution, that is,

P (Y11 = n11) =

(
n1+

n11

)(
n2+

n+1 − n11

)
(
n

n+1

) .

Given the marginal totals, n11 determines the other three cell counts. The exact p-value is
determined using the hypergeometric distribution. The procedure to calculate the p-value
for testing H0 : θ = 1 is as follows. Of the four marginal totals, select the smallest one
and create ordered pair of integers with that sum. Next complete the 2 × 2 table for each
of the ordered pair. Then, the two-sided p-value is given by P (Y11 ≤ n11) where n11 is the
observed frequency in cell (1, 1). For a one sided test, the p-value is found by comparing the
observed frequency n11 to its expected value µ̂11. If n11 > µ̂11, then the onesided (right-sided
alternative: H1 : θ > 1) p-value is P (Y11 ≥ µ̂11) and if n11 < µ̂11, then the onesided (left-sided
alternative: H1 : θ < 1) p-value is P (Y11 ≤ n11).
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Example 9.20. Suppose A and B are two small colleges, the results of the beginning Statistics
course at each of the two colleges are given below.

Statistics
Colleges Pass Fail Total

A 8 14 22
B 1 3 4

Total 9 17 26

Do the data provide sufficient evidence to indicate that the proportion of passing Statistics
differs for the two colleges?

Solution: The hypothesis to be tested is, H0 : π1|A = π1|B, the proportion of passing
Statistics do not differ significantly for the two colleges. Since the sample sizes are small,
Fisher’s exact test will be used. Since n2+ = 4 is the smallest marginal total, the following
ordered pairs for (n21, n22) can be determined: (0, 4), (1, 3), (2, 2), (3, 1) and (4,0). For each
pair, the 2× 2 table is completed and the corresponding probability is computed using

P (Y11 = n11) =
n1+! n2+! n+1! n+2!

n! n11! n12! n21! n22!
.

For (n21, n22)=(0, 4):

9 13
⇒ P (Y11 = 9) =

22! 4! 9! 17!

26! 9! 13! 0! 4!
= 0.159197

0 4

For (n21, n22)=(1, 3):

8 14
⇒ P (Y11 = 8) =

22! 4! 9! 17!

26! 8! 14! 1! 3!
= 0.409365

1 3

For (n21, n22)=(2, 2):

7 15
⇒ P (Y11 = 7) =

22! 4! 9! 17!

26! 7! 15! 2! 2!
= 0.327492

2 2

For (n21, n22)=(3, 1):

6 16
⇒ P (Y11 = 6) =

22! 4! 9! 17!

26! 6! 16! 3! 1!
= 0.095518

3 1

For (n21, n22)=(4, 0):

5 17
⇒ P (Y11 = 5) =

22! 4! 9! 17!

26! 5! 17! 4! 0!
= 0.008428

4 0

Since the observed frequency n11 = 8, the two sided p-value is P (Y11 ≤ 8) = P (Y11 =
5) + P (Y11 = 6) + P (Y11 = 7) + P (Y11 = 8) = 1. Hence, there is not enough evidence to
conclude that the proportion of passing Statistics differs for the two colleges.

Since the observed frequency n11 = 8 > µ̂11 = 7.6, the alternative hypothesis is (H1 :
π1|A > π1|B). Then the onesided p-value is P (Y11 ≥ 7.6) = P (Y11 = 8) + P (Y11 = 9) =
0.159197 + 0.409365 = 0.568562. Again, there is not enough evidence to indicate that the
probability of passing Statistics is higher at college A than at college B.
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9.7 Measures of Linear Association for Ordinal Variables

In situations where both the explanatory and response variables are ordinal, the X2 and G2

tests ignore the fact that the levels of the variables have distinct orderings. When both vari-
ables are ordinal, there will be an interest to examine whether individuals with high levels
of an explanatory variable tend to have high (low) levels of the corresponding response vari-
able. For instance, suppose that the explanatory variable is dose, with increasing (possibly
numeric) levels of amount of drug given to a patient, and the response variable is categorical
measuring the degree of improvement. Then, it is essential to determine if as dose increases,
the degree of improvement increases.

Many measures have been developed for this type of ordinal variables classification. Most an-
alytical techniques are based on concordant and discordant pairs. A concordant pair involves
a pair where a subject is higher on both variables than other subject. A discordant pair is
a pair where a subject is higher on one variable, but lower on the other variable, than other
subject. If a pair is said to be tied if a subject is in the same category of a variable.

More concordant pairs than discordant pairs indicates a positive association between the two
variables whereas more discordant pairs than concordant pairs indicates negative association
between the variables.

Consider the following table

Income Level
Education Level Low High Total

High School N11 N12

College N21 N22

Total

Looking at the above table, it is easy to observe that income category is ordered by low
and high. Similarly education category is ordered, with education ending at high school
being the low category and education ending at college being the high category. All N11

observations represent individuals in low income and low education category and all N22

observations represent individuals in high income and high education category. Thus, there
are C = N11N22 concordant pairs. On the other hand, all N12 observations are higher on
the income variable and lower on the education variable, while all N21 observations are lower
on the income variable and higher on the education variable. Thus, there are D = N12N21

discordant pairs.

9.7.1 The Gamma Measure

The strength of the association can be measured by calculating the difference in the propor-
tions of concordant and discordant pairs. This is called the gamma (γ) measure which is
defined as

γ =
C

C +D
− D

C +D
=
C −D
C +D

.

Since γ represents the difference in proportions, its value is between -1 and 1. A positive
value of gamma indicates a positive association while a negative value of gamma indicates a
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negative association. A value close to zero indicates weak association.

Let us consider again the above 2× 2 table. Let n11 = 25, n12 = 12, n21 = 11 and n22 = 14.
The number of concordant pais is Ĉ = n11n22 = 25(14) = 350; the number of discordant
pairs is D̂ = n12n21 = 12(11) = 132. Therefore, γ̂ = 0.45 which indicates that the association
between education level and income is medium-positive.

For an I × J table, the number of concordant pairs is C =
I∑
i=1

J∑
j=1

Nij(
I∑

h=i+1

J∑
k=j+1

Nhk) and

the number of discordant pairs is D =
I∑
i=1

J∑
j=1

Nij(
I∑

h=i+1

j−1∑
k=1

Nhk).

Example 9.21. Find the gamma measure of association for the following cross-classification
of HIV/AIDS patients by Clinical Stage and Functional Status.

Functional Status
Clinical Stage Bedridden Ambulatory Working Total

Stage I 0 23 324 347
Stage II 11 96 407 514
Stage III 28 233 235 496
Stage IV 18 52 37 107

Total 57 404 1003 1464

Solution: The total number of concordant pairs is

Ĉ =0(96 + 407 + 233 + 235 + 52 + 37) + 23(407 + 235 + 37)

+ 11(233 + 235 + 52 + 37) + 96(235 + 37) + 28(52 + 37) + 233(37)

=58969

The total number of discordant pairs is

D̂ =23(11 + 28 + 18) + 324(11 + 96 + 28 + 233 + 18 + 52) + 96(28 + 18)

+ 407(28 + 233 + 18 + 52) + 233(18) + 235(18 + 52)

=303000

In this example, Ĉ < D̂, suggesting a tendency for low clinical stage to occur with high
functional status of patients and higher clinical stages with lower functional status.

γ̂ =
Ĉ − D̂
Ĉ + D̂

=
58969− 303000

58969 + 303000
= −0.674

Of the untied pairs, the proportion of concordant pairs is 0.674 lower than the proportion of
discordant pairs. This indicates that there is a medium negative linear association between
clinical stage and functional status of HIV/AIDS patients. That is, as the clinical stage
(severity) of the patient increases, the functional status of the patient decreases and vice
versa.
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9.7.2 The Kendall’s tau-b

Kendall’s tau-b, denoted τb, is a more sensitive measure of association between two ordinal
variables. The formula for calculating Kendall’s tau-b τb is:

τb =
C −D

0.5

√√√√(N2 −
I∑
i=1

N2
i+

)(
N2 −

J∑
j=1

N2
+j

) .

The estimated value of Kendall’s tau-b τ̂b is also obtained by substituting the sample frequen-
cies in place of the population frequencies as:

τ̂b =
Ĉ − D̂

0.5

√√√√(n2 −
I∑
i=1

n2
i+

)(
n2 −

J∑
j=1

n2
+j

) .

This measure has the advantage of adjusting for ties. The result of adjusting for ties is that
the value of τb is always a little closer to 0 than the corresponding value of gamma.

Example 9.22. Find the Kendall’s tau-b τb for the data given in example 9.21.

Solution:

τ̂b =
58969− 303000

0.5
√

[14642 − (572 + 4042 + 10032)][14642 − (3472 + 5142 + 4962 + 1072)]

=
−244031

0.5
√

(2143296− 1172474)(2143296− 642070)

= −0.404
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Chapter 10

Correlation and Regression

10.1 Measures of Correlation

Many times in research, it is important to explore the relationship between two quantitative
variables. Correlation is a statistical tool desired towards measuring the degree of linear rela-
tionship (association) between two quantitative variables. If the value of one variable changes
when the value of another variable changes, then the variables are said to be correlated.

Before looking at a more detailed statistical approach, let us present a graphical mechanism
for examining the relationship between two quantitative variables. The simplest way is to
plot the pair of values (xi, yi), i = 1, 2, · · · , N on the xy plane, known as scatter plot (or
scatter diagram). If the relationship between the two variables can be described by a straight
line, then the relationship is called linear otherwise it is known as non-linear.

Such a plot gives some idea about the presence and absence of correlation, and the nature
(direct or inverse) of correlation. But, it will not indicate about the strength or degree of
relationship between the variables.

Example 10.1. Based of the Ethiopian DHS 2016, the total fertility rate is highest in Somali
regional state (7.2 children per woman) and lowest in Addis Ababa city adminstration (1.8
children per woman). Following table presents the distribution of modern contraception usage
among married women aged 15-49 and the total fertility rate for the 3 years preceding the
survey, Ethiopia DHS 2016, in each of the 9 administrative regions and 2 city administrations
of the country.
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Region % Use of Contraception TFR

Tigray 35.2 4.7
Affar 11.6 5.5
Amhara 46.9 3.7
Oromia 28.1 5.4
Somali 1.4 7.2
Benishangul-Gumuz 28.4 4.4
SNNPR 39.6 4.4
Gambela 34.9 3.5
Harari 29.3 4.1
Addis Ababa 50.1 1.8
Dire Dawa 29.1 3.1

Obtain the scatter plot of TFR versus the percentage use of modern contraception, and try
to identify their relationship.

10.1.1 Covariance

Covariance is a measure of the joint variation between two quantitative variables. That is, it
measures the way in which the values of the two variables vary together.

Recall the population variance of a certain variable x is defined as σ2
x = 1

N

∑N
i=1(xi−x̄)2 = σxx

which is estimated by the sample variance given by s2
x = 1

n−1

∑n
i=1(xi − x̄)2 = sxx.

Similarly the population covariance between two variables x and y is defined as

σxy =
1

N

N∑
i=1

(xi − x̄)(yi − ȳ) =
1

N

(
N∑
i=1

xiyi −
1

N

N∑
i=1

xi

N∑
i=1

yi

)
.

Consequently, the sample covariance is given by:

sxy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ) =
1

n− 1

(
n∑
i=1

xiyi −
1

n

n∑
i=1

xi

n∑
i=1

yi

)
.

The value of a covariance can be any real number (negative, zero or positive). If the covari-
ance is zero, there is no linear relationship between the two variables. If the covariance is
positive, there is a direct linear relationship (an increase in the value of one variable leads to
an increase in the value of the other variable). For example, the relationship between birth
weight of infants and gestational age is expected to be positive.

If the covariance is negative, there is an inverse linear relationship between the variables (an
increase in the value of one variable implies a decrease in the value of the other variable).
For example, the relationship between heart rate and age of individuals is expected to be
negative.

Example 10.2. A researcher wants to find out if there is a relationship between the height
of sons and the height of their fathers. In other words, do taller fathers have taller sons? The
researcher took a random sample of 8 fathers and their 8 sons. Their height in centimeters is
given below.
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Father Height (x) 168 173 165 170 175 178 180 164

Son Height (y) 165 170 168 170 173 175 174 167

Draw the scatter plot and what can you say from the plot about the the relationship between
the two variables. Also, find the covariance and interpret the result.

Solution: The scatter plot of the height of sons and the height of their fathers is:

The graph clearly shows there is a positive linear relationship between the height of sons and
the height of their fathers.

To find the covariance between the two variables, the necessary calculations are presented in
the following table:

No. x y xy

1 168 165 27720
2 173 170 29410
3 165 168 27720
4 170 170 28900
5 175 173 30275
6 178 175 31150
7 180 174 31320
8 164 167 27388

Total
8∑
i=1

xi = 1373
8∑
i=1

yi = 1362
8∑
i=1

xiyi = 233883

Therefore, the estimated (sample) covariance is:

sxy =
1

8− 1

(
8∑
i=1

xiyi −
1

8

8∑
i=1

xi

8∑
i=1

yi

)
=

1

7

[
233883− 1

8
1373(1362)

]
= 18.54.

Since the estimated covariance is about 19 which is greater than 0, there is a positive linear
relationship between the height of sons and their fathers for the sample data. That is, it
seems taller fathers have taller sons.
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Note: The value of a covariance depends on the size of the observed values. For example, had
the observed values of the height of sons and fathers been measured in meters, the sample
covariance would be 0.001854. Therefore, the strength of the linear relationship between two
variables could not be determined from the covariance value.

10.1.2 Correlation Coefficient

The coefficient of correlation, which was developed by Karl Pearson, is a measure of the
degree or strength of the linear association between two variables. It is defined as a ratio of
the covariance between the two variables and the product of the standard deviations of each
variable. The population correlation coefficient is denoted by the Greek letter ρ, rho:

ρ =
σxy
σxσy

=

N∑
i=1

(xi − x̄)(yi − ȳ)√
N∑
i=1

(xi − x̄)2

√
N∑
i=1

(yi − ȳ)2

Depending on the sign of a covariance, a correlation coefficient can be positive or negative.
But, the value lies between the limits -1 and +1; that is, −1 ≤ ρ ≤ 1. The sign indicates the
direction of the relationship and the absolute value indicates the strength of the relationship.

• If ρ = 0, there is no linear relationship between the two quantitative variables.

• If ρ > 0, there is a positive (direct) linear relationship between the variables (as the value
of one increases, the value of the other variable increases). For example, the relationship
between birth weight of infants and gestational age is expected to be positive.

• If ρ < 0, there is a negative (inverse) linear relationship between the variables (as the
value of one increases, the value of the other variable decreases). For example, the
relationship between heart rate and age of individuals is expected to be negative.

• If ρ ≈ ±1, there is a strong positive (ρ ≈ 1) or negative (ρ ≈ −1) linear relationship
between the variables.

The sample correlation coefficient is denoted by r:

r =
sxy
sxsy

=

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑
i=1

(xi − x̄)2

√
n∑
i=1

(yi − ȳ)2

This can also be written as:

r =

n
n∑
i=1

xiyi −
n∑
i=1

xi
n∑
i=1

yi√
n

n∑
i=1

x2
i −

(
n∑
i=1

xi

)2
√
n

n∑
i=1

y2
i −

(
n∑
i=1

yi

)2
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Example 10.3. Recall example 10.2 and find the correlation coefficient and interpret.

Solution: The necessary calculations to calculate the correlation coefficient are presented as
follows:

No. x y x2 y2 xy

1 168 165 28224 27225 27720
2 173 170 29929 28900 29410
3 165 168 27225 28224 27720
4 170 170 28900 28900 28900
5 175 173 30625 29929 30275
6 178 175 31684 30625 31150
7 180 174 32400 30276 31320
8 164 167 26896 27889 27388

Total
8∑
i=1

xi = 1373
8∑
i=1

yi = 1362
8∑
i=1

x2
i = 235883

8∑
i=1

y2
i = 231968

8∑
i=1

xiyi = 233883

r =

8
8∑
i=1

xiyi −
8∑
i=1

xi
8∑
i=1

yi√
8

8∑
i=1

x2
i −

(
8∑
i=1

xi

)2
√

8
8∑
i=1

y2
i −

(
8∑
i=1

yi

)2

=
8(233883)− 1373(1362)√

8(235883)− (1373)2
√

8(231968)− (1362)2

= 0.892

Since the sample correlation coefficient is positive and large (near to 1), there is a strong
positive linear relationship between the height of sons and their fathers. In other words,
taller fathers have taller sons for the sample data.

Notes:

• Although, the sign of the correlation and covariance are the same, the correlation is
ordinarily easier to interpret as:

– its magnitude is bounded, that is, −1 ≤ r ≤ 1.

– it is unitless (its value is independent of the measurement units of the variables).

– it takes the variability into account.

• But, it has also some disadvantages:

– Correlation does not measure non-linear relationships. Two variables might have
a perfect non-linear relationship, but, the correlation coefficient would still be zero.
For example, even if y = x2;−4 < x < 4 is an exact quadratic relationship, yet r
is nearly zero. (Why?)

– Zero correlation does not necessarily indicate independence of two variables. For
example, the correlation between y and x would be zero if y = x2;−4 < x < 4, but,
it does not mean y and x have no relationship at all. If x and y are statistically
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independent, the correlation coefficient between them will be zero; but the converse
is not always true. In other words, zero correlation does not necessarily imply
independence.

– A strong correlation does not necessarily imply cause and effect relationship.

– It cannot be extrapolated beyond the observed range of values of the variables.

– It is also highly affected by extreme values (outliers) and thus can sometimes be
misleading.

Inference for Correlation Coefficient, rho

Having plotted the data, and established that it is plausible the two variables are associated
linearly, it is necessary to decide whether the observed correlation could have arisen by chance
or really significant.

Like other sample statistics, the sample correlation coefficient r is a random variable with

mean E(r) = ρ. The standard error is SE(r) = σr =
√

1−ρ2
n−2 which is estimated by ŜE(r) =

σ̂r =
√

1−r2
n−2 .

Step 1: State both the null and alternative hypotheses. There three possible options are:

Option 1: H0 : ρ = 0 vs H1 : ρ 6= 0

Option 2: H0 : ρ = 0 vs H1 : ρ < 0

Option 3: H0 : ρ = 0 vs H1 : ρ > 0

Step 2: Specify the level of significance α and obtain the critical value based on the t distri-
bution. The critical value for a two sided test is tα/2(n − 2) whereas the critical value
for a one sided test is tα(n− 2).

Step 3: Use the t test statistic and obtain its calculated value:

t =
r − ρ√

(1− r2)/(n− 2)
∼ t(n− 2).

Step 4: Decision: If the absolute value of the calculated value is greater than the critical
value, H0 should be rejected.

Step 5: Conclusion.

Example 10.4. Consider the data in example 10.2 and using the summary statistics given
in example 10.3, test the significance of the correlation coefficient.

Solution: The estimated correlation coefficient is given as r = 0.892. The estimated standard

error of the sample correlation coefficient is ŜE(r) =
√

1−0.8922

8−2 = 0.1845.

Step 1: Hypothesis:

H0 : ρ = 0. There is no significant linear relationship between the heights of sons and
their fathers.
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H1 : ρ 6= 0. There is a significant linear relationship between the heights of sons and
their fathers.

Step 2: Assuming α = 0.05, t0.025(6) = 2.447.

Step 3: The calculated value of the t test statistic is:

t =
0.892− 0

0.1845
= 4.835.

Step 4: Decision: As tcal = 4.835 > t0.025(6) = 2.447, the null hypothesis of no significant
linear association should be rejected.

Step 5: Conclusion: There is a positive linear relationship between the height of sons and
their fathers at 5% level of significance. In particular, it can be concluded that taller
fathers have taller sons at 5% level of significance.

The (1− α)100% confidence interval for the population correlation coefficient ρ is given by:

[
r ± tα/2(n− 2) ŜE(r)

]
=

[
r ± tα/2(n− 2)

√
1− r2

n− 2

]
.

Example 10.5. Consider again the data in example 10.2 and construct the 95% confidence
interval for the correlation coefficient.

Solution: The 95% confidence interval for the correlation coefficient for the correlation co-
efficient of the height of sons and their fathers is:[

0.892± 2.447

√
1− 0.8922

8− 2

]
= (0.4405, 1.3435) = (0.4405, 1).

Clearly, since the confidence interval is larger than 0, there is a positive linear relationship
between the height of sons and the height of their fathers.

Exercise 10.1. Recall example 10.1. Determine the covariance and correlation coefficient,
and interpret the results. Also, test the significance of the correlation coefficient.

10.1.3 Spearman’s Rank Correlation

It is not always possible to take measurements on units or objects. Many characters are
expressed in comparative terms such as beauty, smartness, temperament, · · · . In such cases
the units are ranked pertaining to that particular character instead of taking measurements
on them. Sometimes, the units are also ranked according to their quantitative measure. In
these type of studies, two situations arise, (i) the same set of units is ranked according two
characters, (ii) two judges give ranks to the same set of units independently pertaining to one
character. In both these situations we get paired ranks for a set of units. For example, the
students are ranked according to their marks in Mathematics and Statistics. Two judges rank
the girls independently in a beauty competition. In all these situations, the usual Pearson’s
correlation coefficient cannot be obtained.
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Suppose that a group of n individuals is given grades or ranks with respect to two character-
istics separately. Let Rxi and Ryi be the ranks of the ith, i = 1, 2, · · · , n, individual on the
two characteristics. Then, the Spearman’s rank correlation coefficient is given by:

rs = 1−
6

n∑
i=1

d2
i

n(n2 − 1)
where di = Rxi −Ryi .

Note that −1 ≤ rs ≤ 1.

Example 10.6. The ranks of 10 students in two courses Biostatistics and Epidemiology are
given below. Calculate the rank correlation and interpret.

Biostatistics 5 2 9 8 1 10 3 4 6 7

Epidemiology 6 4 7 9 3 8 2 1 10 5

Note: The above formula is used when all the ranks within each characteristics are unique.
But, for repeated ranks, a correction factor is required. Specifically, tied values should be
assigned the average of the ranks they would receive if the values were unequal. For example,
if the forth and fifth-ranked values are equal, then each value should be assigned a rank of
4+5

2 = 4.5. Similarly, if the seventh, eighth and ninth-ranked values are tied, then each value
should be assigned a rank of 7+8+9

3 = 8.

Example 10.7. Obtain the rank correlation for the following data.

x 85 74 85 50 65 78 74 60 74 90

y 78 91 78 58 60 72 80 55 68 70

Ans: rs = −0.545

Step 1: State both the null and alternative hypotheses. There three possible options are:

Option 1: H0 : ρ = 0 vs H1 : ρ 6= 0

Option 2: H0 : ρ = 0 vs H1 : ρ < 0

Option 3: H0 : ρ = 0 vs H1 : ρ > 0

Step 2: Specify the level of significance α and obtain the critical value based on the t???
distribution. The critical value for a two sided test is rsα/2(n− 2) whereas the critical
value for a one sided test is rsα(n− 2).

Step 3: Use the t test statistic and obtain its calculated value:

rs = 1−
6

n∑
i=1

d2
i

n(n2 − 1)
∼ t(n− 2).

Step 4: Decision: If the absolute value of the calculated value is greater than the critical
value, H0 should be rejected.

Step 5: Conclusion.
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10.2 Simple Linear Regression

Regression may be defined as the estimation of the unknown value of one variable from the
known value(s) of one or more variables. The variable whose values are to be estimated is
known as dependent1 variable while the variables whose are used in determining the value of
the dependent variable are called independent2 variables.

If the relationship between the two variables can be described by a straight line then the
regression is known as linear regression otherwise it is called non-linear.

A linear regression involving only two variables (one dependent and one independent) is called
simple linear regression and a linear regression analysis that involves more than two variables
(one dependent and two or more independents) is called multiple linear regression.

10.2.1 Representation of the Model

A simple linear regression model is a linear function of a single explanatory variable. The
model which is used to estimate the expected value (mean) of a dependent variable Y for any
given value of an independent variable X is called a linear regression of Y on X and can be
written as:

yi = α+ βxi + εi; i = 1, 2, · · · , N

where

yi is the ith actual value of the dependent variable,

xi is the ith actual value the independent variable,

α is the intercept (constant) of the model,

β is the slope (rate of change) of the model,

εi is the ith value of the error term.

This model is called population regression model. The term α+βxi is the fixed (deterministic)
part of the model. But, the response variable Y and the error term εi are random variables.

The error term εi is generally assumed to be normally distributed with mean 0, and variance
σ2 (called error variance), that is, εi ∼ N (0, σ2). Consequently, E(Yi|Xi) = µYi|Xi = α+βXi

and V (Yi|Xi) = σYi|Xi = V (εi) = σ2. Therefore, Yi|Xi ∼ N (α+ βXi, σ
2).

In this setting, α, β and σ2 are population parameters to be estimated based on sample data.
They are interpreted as follows:

• α is the expected value (mean) of the dependent variable when the value of the inde-
pendent variable is zero.

• β is the change (increment or decrement) in the expected value (mean) of the dependent
variable when the value of the independent variable increases by 1 unit.

1A dependent variable is also called an outcome or a response variable
2An independent variable is also called a factor, an exposure variable, covariate or predictor
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Note: The sign of β is the same as to that of the covariance and correlation coefficient. If β
is positive, then there is a direct linear relationship between the two variables (that is, the
expected value of the dependent variable increases as the value of the independent variable
increases). If β is negative, there is an inverse linear relationship between the two variables
(that is, the expected value of the dependent variable decreases as the value of the independent
variable increases). But, if β is zero, it shows there is no linear relationship between the two
variables (that is, the mean value of the dependent variable cannot be determined from the
value of the independent variable).

10.2.2 Estimation of the Intercept α and Slope β

Assume a sample of n subjects is taken observing values yi of the response variable and xi
of the explanatory variable. Then, the interest is to choose values α̂ and β̂ that estimate the
intercept and slope parameters α and β, respectively. The fitted (estimated) regression model
is, therefore, written as:

ŷi = α̂+ β̂xi; i = 1, 2, · · · , n

where

ŷi is the ith fitted (estimated) value of the dependent variable.

xi is the ith actual value of the independent variable.

α̂ is the estimated intercept.

β̂ is the estimated slope.

The most common and widely used method of estimation is called ordinary least squares
(OLS) that minimize the distances of the data points to the fitted line. Now, for each
observed response yi, with a corresponding independent variable xi, the fitted (estimated)
value is ŷi = α̂+ β̂xi. The objective is to minimize the sum of the squared distances of each
observed response to its fitted value, called Sum Squares of Error (SSE):

SSE =
n∑
i=1

(yi − ŷi)2 =
n∑
i=1

[yi − (α̂+ β̂xi)]
2

The estimates of the parameters can be obtained as:

β̂ =
sxy
sxx

=

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2

=

n
n∑
i=1

xiyi −
n∑
i=1

xi
n∑
i=1

yi

n
n∑
i=1

x2
i −

(
n∑
i=1

xi

)2

and

α̂ = ȳ − β̂x̄ =
1

n

n∑
i=1

yi − β̂
1

n

n∑
i=1

xi

Example 10.8. The weight (in kilograms) of a random sample of 10 infants of age up to 6
weeks is recorded as follows.
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Age (in weeks) 1 2 2 3 5 4 5 4 6 3

Weight (in kilograms) 4.1 3.5 3.6 4.0 5.0 5.2 4.5 4.6 4.8 3.8

1. Estimate the regression model of weight of infants on their age.

2. Interpret the estimated intercept and slope.

3. What would be the predicted weight of an infant if the age is 8 weeks?

Solutions: The necessary calculations are presented in the following table:

No xi yi x2
i y2

i xiyi
1 1 4.1 1 16.81 4.1
2 2 3.5 4 12.25 7.0
3 2 3.6 4 12.96 7.2
4 3 4.0 9 16.00 12.0
5 5 5.0 25 25.00 25.0
6 4 5.2 16 27.04 20.8
7 5 4.5 25 20.25 22.5
8 4 4.6 16 21.16 18.4
9 6 4.8 36 23.04 28.8

10 3 3.8 9 14.44 11.4

Total
10∑
i=1

xi = 35
10∑
i=1

yi = 43.1
10∑
i=1

x2
i = 145

10∑
i=1

y2
i = 188.95

10∑
i=1

xiyi = 157.2

1. Thus, using the formula for estimating the slope and intercept parameters:

β̂ =

10
10∑
i=1

xiyi −
10∑
i=1

xi
10∑
i=1

yi

10
10∑
i=1

x2
i −

(
10∑
i=1

xi

)2 =
10(157.2)− 35(43.1)

10(145)− (35)2
= 0.282

and

α̂ =
1

10

10∑
i=1

yi − β̂
1

10

10∑
i=1

xi =
1

10
(43.1)− (0.282)

1

10
(35) = 3.323.

The estimated regression model is: ŷi = 3.323 + 0.282xi; i = 1, 2, · · · , 10.

2. Based on the sample data, the mean weight of a newly born infant is about 3.323
kilograms. Also, as the age of an infant increases by 1 week, its mean weight will
increase by 0.282 kilograms.

3. The predicted mean weight of an infant if the age is 8 weeks is ŷi = 3.323 + 0.282(8) =
5.579 kilograms.

174

mailto:es.awol@gmail.com


Bio/Statistics- SPHM 5011 c© 2021 By: Awol S., E-mail: es.awol@gmail.com

10.2.3 Estimation of the Error Variance σ2

The error variance σ2 is estimated by the sample error variance s2 is:

s2 = MSE =
1

n− 2

n∑
i=1

(yi − ŷi)2 =
1

n− 2
SSE where SSE = (n− 1)

(
s2
y −

s2
xy

s2
x

)
.

This estimated variance s2 can be thought of as the ’average’ squared distance from each
observed response to the fitted line. The word average is in quotes since the denominator is
n − 2 and not n. The smaller s2, the closer the observed responses fall to the line and the
better the predicted values will be.

Example 10.9. For the simple linear regression model in example 10.8, find the estimated
error variance.

Solution: First, let us calculate the variances of each variable and the covariance between
the two variables: s2

x = 1
9 [145 − 1

10(352)] = 2.5, s2
y = 1

9 [188.95 − 1
10(43.12)] = 0.354 and

sxy = 1
9 [157.2 − 1

10(35)(43.1)] = 0.706. Thus, SSE = (10 − 1)(0.354 − 0.7062

2.5 ) = 1.392.
Therefore, the estimated error variance of the estimate is s2 = SSE

10−2 = 1.392
8 = 0.174 and the

standard error of the estimate is s =
√

0.174 = 0.417.

10.2.4 Inferences for the Slope β

Recall that in the simple linear regression model, E(Yi|Xi) = α + βxi. In this model, β
represents the change in the mean of the response variable Yi, as the independent variable
xi increases by 1 unit. Note that if β = 0, E(Yi|Xi) = α, which implies the mean of the
response variable is the same at all values of xi. This implies that knowledge of the level of
the independent variable does not help predict the response variable.

Under the assumptions stated previously, namely that Yi ∼ N (α+ βxi, σ
2), the estimator β̂

has a sampling distribution that is normal with mean β (the true value of the parameter),
and variance V (β̂) = σ2

β̂
= σ2/[(n− 1)s2

x]. That is, β̂ ∼ N{β, σ2/[(n− 1)s2
x]}.

The standard error of β̂ is, therefore, SE(β̂) = σβ̂ = σ/
√

(n− 1)s2
x which is estimated by

ŜE(β̂) = σ̂β̂ = s/
√

(n− 1)s2
x. Therefore, here is the procedure if β is equal to some fixed

value, say β0. In virtually all real-life cases, β0 = 0.

Testing for the Slope β

Step 1: State both the null and alternative hypotheses. There three possible options are:

Option 1: H0 : β = 0 vs H1 : β 6= 0

Option 2: H0 : β = 0 vs H1 : β < 0

Option 3: H0 : β = 0 vs H1 : β > 0

Step 2: Specify the level of significance α and obtain the critical value. The critical value for
a two sided test is tα/2(n− 2) whereas the critical value for a one sided test is tα(n− 2).
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Step 3: Use the t test statistic and obtain its calculated value:

t =
β̂ − β

s/
√

(n− 1)s2
x

∼ t(n− 2).

Step 4: Decision: If the absolute value of the calculated value is greater than the critical
value, H0 should be rejected.

Step 5: Conclusion.

Confidence Interval for the Slope β

The (1− α)100% confidence interval for β is given by: [β̂ ± tα/2(n− 2) ŜE(β̂)]. That is,[
β̂ ± tα/2(n− 2)

s√
(n− 1)s2

x

]
.

Example 10.10. Test the significance of the slope parameter and construct the 95% confi-
dence interval using the data in example 10.8.

Solution: The estimated standard error is obtained as s = 0.417 and variance of x is s2
x = 2.5.

Step 1: Hypothesis:

H0 : β = 0. There is no significant linear relationship between weight of infants and
their age.

H1 : β 6= 0. There is a significant linear relationship between weight of infants and their
age.

Step 2: Assuming α = 0.05, t0.025(8) = 2.306.

Step 3: The t test statistic is:

t =
0.282− 0

0.417/
√

(10− 1)2.5
= 3.208.

Step 4: Decision: Since, tcal = 3.208 > t0.025(8) = 2.306, H0 should be rejected.

Step 5: Conclusion: There is a significant positive linear relationship between weight of
infants and their age at 5% significance level.

Also, the 95% confidence interval for the effect (β) of age on the weight of infants is:

[0.282± 2.306(0.0879)] = (0.282± 0.19883) = (0.0793, 0.4847).

Therefore, as the age of the infant increases by 1 week, the mean weight of the infant increases
by between 0.0793 and 0.4847 at 5% significance level.
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10.2.5 The ANOVA approach to Regression

Consider the deviations of the individual responses yi from their overall mean ȳ. The devi-
ations could be broken into two parts; the deviation of the fitted value ŷi from the overall
mean ȳ, and the deviation of the observed value yi from its fitted value ŷ = α̂+ β̂xi. This is
similar in nature to the way of partitioning the total variation in the one-way ANOVA case.
It can be written as:

yi − ȳ = (ŷi − ȳ) + (yi − ŷi).

Squaring both sides and then summing over all the n observed and fitted values yields:

n∑
i=1

(yi − ȳ)2

︸ ︷︷ ︸
SST: df=n−1

=

n∑
i=1

(ŷi − ȳ)2

︸ ︷︷ ︸
SSR: df=1

+

n∑
i=1

(yi − ŷi)2

︸ ︷︷ ︸
SSE: df=n−2

.

These three pieces are called the sum squares of total (SST), the sum squares of regression
(SSR), and the sum squares of error (SSE) respectively. The SST represents the total vari-
ation in the observed responses, SSR represents the amount of the total variation that is
’accounted for’ (explained) by taking into account the explanatory variable x, and SSE repre-
sents the variation in the observed responses around the fitted regression model (unexplained
variation).

Hence, SST=SSR+SSE. This decomposition can be used to test the hypothesis H0 : β = 0 vs
H1 : β = 0 and is also useful in subsequent sections when there are more than one independent
variable. The setup of the ANOVA table is as follows.

Source of variation Sum squares (SS) df Mean squares (MS) F

Regression SSR =
n∑
i=1

(ŷi − ȳ)2 1 MSR = SSR
1 F = MSR

MSE

Error SSE =
n∑
i=1

(yi − ŷi)2 n− 2 MSE = SSE
n−2

Total SST =
n∑
i=1

(yi − ȳ)2 n− 1

Note that SST=(n − 1)s2
y and also SSE=(n − 2)s2. Then, SSR=SST-SSE. The testing pro-

cedure is similar to as usual.

Step 1: State both the null and alternative hypotheses:

H0 : β = 0.

H1 : β 6= 0.

Step 2: Specify the level of significance α and obtain the critical value Fα[1, n− 2].

Step 3: Use the F test statistic and obtain its calculated value:

F =
SSR/1

SSE/(n− 2)
=

MSR

MSE
∼ F (1, n− 2).

Step 4: Decision: If Fcal > Fα(1, n− 2), the null hypothesis H0 : β = 0 has to be rejected.
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Step 5: Conclusion.

Note that there already have a procedure for testing the hypothesis H0 : β = 0 vs H1 : β = 0
(see section 10.2.4 on Inferences for the Slope β), but this is an important lead-in to multiple
linear regression.

Example 10.11. Recall example 10.8 and test the significance of the slope parameter using
the ANOVA approach.

Solution: Previously, it is calculated that s2
y = 0.354 and SSE=1.392. Thus, SST=9(0.354) =

3.186. Therefore, SSR=SST-SSE=3.186-1.392=1.794. Therefore, the ANOVA table is:

Source of variation Sum squares (SS) df Mean squares (MS) F

Regression 1.794 1 1.794 10.31
Error 1.392 8 0.174

Total 3.186 9

For testing the slope parameter, the test procedure is:

Step 1: Hypotheses:

H0 : β = 0.

H1 : β 6= 0.

Step 2: α = 5% and F0.05(1, 8) = 5.318.

Step 3: The calculated value of the F test statistic is:

F =
1.794/1

1.392/8
= 10.31.

Step 4: Decision: Since Fcal = 10.31 > F0.05(1, 8), the null hypothesis H0 : β = 0 has to be
rejected α = 5%.

Step 5: Conclusion. The age of infants significantly determines their weight.

10.2.6 Coefficient of Determination

Another measure of association in regression analysis is a goodness-of-fit of the model called
coefficient of determination. The coefficient of determination represents the proportion of the
total variation in the response variable that is ’accounted’ for by fitting the regression on the
independent variable(s). It is defined in a general formula as:

R2 =
SSR

SST
= 1− SSE

SST
.

Particularly, for a simple linear regression (two variables case), the coefficient of determina-
tion is just the square of the sample correlation coefficient, r2. This measure is between 0
and 1 (0 ≤ r2 ≤ 1) and it measures the proportion of the total variation in the dependent
variable explained by the independent variable x. If the value of r2 approaches to 1, it means
the regression model is a good fit and if it approaches 0, the model is a bad fit to the data.
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In example 10.3, the correlation coefficient between the height of sons and their fathers is
0.892. Then, the coefficient of determination is r2 = 0.796. This means about 80% of the
variation in the height of sons is explained by the height of their fathers.

Example 10.12. A study was reported in a medical journal suggesting that the peak heart
rate of an individual can reach during intensive exercise decreases with age. A cardiologist
wants to do his own study. The next 9 patients were given a stress test on the treadmill at 6
miles per hour and their ages and their heart rates were recorded as follows:

Age 30 30 40 20 20 45 30 45 50

Heart Rate 190 180 180 200 195 170 185 175 165

1. Identify the dependent and independent variables.

2. Estimate the regression model.

3. What is the peak heart rate of an 80 year old man who is given a similar stress test?

4. Calculate the coefficient of correlation and coefficient of determination, and interpret
the results.

Solutions: The required summary statistics are shown in the following table.

No. x y x2 y2 xy

1 30 190 900 36100 5700
2 30 180 900 32400 5400
3 40 180 1600 32400 7200
4 20 200 400 40000 4000
5 20 195 400 38025 3900
6 45 170 2025 28900 7650
7 30 185 900 34225 5550
8 45 175 2025 30625 7875
9 50 165 2500 27225 8250

Total
9∑
i=1

xi = 310
9∑
i=1

yi = 1640
9∑
i=1

x2
i = 11650

9∑
i=1

y2
i = 299900

9∑
i=1

xiyi = 55525

1. The dependent variable is heart rate and the independent variable is age.

2. The estimated model is ŷi = 216.37− 0.99xi; i = 1, 2, · · · , 9.

3. The estimated peak heart rate of an 80 year old man is ŷ = 216.37−0.99×80 = 137.17.

4. The correlation coefficient and coefficient of determination are r = −0.95 and r2 = 0.90,
respectively.

10.3 Multiple Linear Regression

Outcome variables in medical research are usually affected by a multitude of factors. Fortu-
nately, the simple linear regression is easily extended to multiple regression. A multiple linear
regression is a regression of a continuous dependent variable on many, say k, independent
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variables (quantitative, qualitative or a mixture of both). In that case, the corresponding
model is written as:

yi = α+ β1xi1 + β2xi2 + · · ·+ βkxik + εi; i = 1, 2, · · · , N

where xij ; j = 1, 2, · · · , k is the ith value of the jth independent variable. The same assump-
tions are made as before in terms of ε, specifically, it is normally distributed with mean 0 and
variance σ2.

Just as before, α, β1, β2, · · · , βk, and σ2 are unknown parameters that must be estimated
from sample data. The parameter α is the usual intercept of the model representing the
mean response when all the independent variables are zero. The parameter βj is the (partial)
slope corresponding to the jth explanatory variable and it represents the change in the mean
response when the jth explanatory variable changes by 1 unit assuming all other explanatory
variables are held constant.

The estimated model will be of the form:

ŷi = α̂+ β̂1xi1 + β̂2xi2 + · · ·+ β̂kxik; i = 1, 2, · · · , n.

Note: In a regression analysis, it is valid to include binary independent variables (that take
only two values, say 0 and 1) directly into the model. The test of significance of the parameter
corresponding to a binary independent variable is equivalent with a t test for testing the
difference between two population means. One mean is the mean value of the dependent
variable for those subjects with x = 0 and the other mean value of the dependent variable is
for those with x = 1.

Example 10.13. Consider a survey of anaemia in women. They had a blood sample taken
and their haemoglobin (Hb) level and packed cell volume (PCV) measured. They were also
asked their age, and whether or not they had experienced the menopause. The results from
a random sample of 20 women are given in the following table.
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Number Hb (g/dl) PCV (%) Age (years) Menopause (1=Yes, 0=No)

1 11.1 35 20 0
2 10.7 45 22 0
3 12.4 47 25 0
4 14.0 50 28 0
5 13.1 31 28 0
6 10.5 30 31 0
7 9.6 25 32 0
8 12.5 33 35 0
9 13.5 35 38 0
10 13.9 40 40 1
11 15.1 45 45 0
12 13.9 47 49 1
13 16.2 49 54 1
14 16.3 42 55 1
15 16.8 40 57 1
16 17.1 50 60 1
17 16.6 46 62 1
18 16.9 55 63 1
19 15.7 42 65 1
20 16.5 46 67 1

The parameter estimates of the multiple linear regression of haemoglobin on PCV, Age and
Menopause are provided in the following table.

Variable Parameter Estimate Standard Error

Constant 5.215 1.572
PCV 0.097 0.035
Age 0.111 0.030
Menopause -0.024 0.954

Write out the estimated model and interpret the parameter estimates for the given sample.

Solution: The estimated model is Ĥbi = 5.215+0.097 PCVi+0.111 Agei−0.024 Menopausei; i =
1, 2, · · · , 20

• As the PCV increases by 1%, the mean haemoglobin level of anemic women increases
by 0.097g/dl assuming the age and menopause status remain constant.

• Controlling for PCV and menopause, the mean haemoglobin level of anemic women
increases by 0.111g/dl as their age increase by 1 year.

• The mean haemoglobin level of those anemic women who experienced menopause (who
are in the post menopause) decreases by 0.024g/dl as compared to those who did not
experience menopause (who are in the pre-menopause) provided that the PCV and age
are held constant.
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10.3.1 Testing the Joint Significance all Predictors

After fitting a multiple linear regression model, the next task is to test whether all the
independent variables included in the model are jointly significant. That is, the hypothesis
to be tested is H0 : β1 = β2 = · · · = βk = 0 (all the k variables are not jointly significant) vs
H1 : not H0 (at least one of the k variables is significant).

n∑
i=1

(yi − ȳ)2

︸ ︷︷ ︸
SST: df=n−1

=
n∑
i=1

(ŷi − ȳ)n︸ ︷︷ ︸
SSR: df=k

+
n∑
i=1

(yi − ŷi)2

︸ ︷︷ ︸
SSE: df=n−p

.

The test statistic is based on the ANOVA approach to regression:

Source of variation Sum squares (SS) df Mean squares (MS) F

Regression SSR =
n∑
i=1

(ŷi − ȳ)2 k MSR = SSR
k F = MSR

MSE

Error SSE =
n∑
i=1

(yi − ŷi)2 n− (k + 1) MSE = SSE
n−(k+1)

Total SST =
n∑
i=1

(yi − ȳ)2 n− 1

The testing procedure is similar to as usual.

Step 1: State both the null and alternative hypotheses:

H0 : β1 = β2 = · · · = βk = 0. All the k predictors are not jointly significant.

H1 : not H0. At least one of the k predictors is significant.

Step 2: Specify the level of significance α and obtain the critical value Fα[k, n− (k + 1)].

Step 3: Use the F test statistic and obtain its calculated value:

F =
SSR/k

SSE/[n− (k + 1)]
=

MSR

MSE
∼ F [k, n− (k + 1)].

Step 4: Decision: If Fcal > Fα[k, n−(k+1)], the null hypothesis of no significant contribution
of the k explanatory variables has to be rejected.

Step 5: Conclusion.

Example 10.14. For the linear regression model estimated using the data in example 10.13,
SSR=93.304 and SSE=16.308. Construct the ANOVA table and then test the joint signifi-
cance of all the three independent variables.

Solution: The population model is of the form Hbi = α+β1 PCVi+β2 Agei+β3 Menopousei+
εi; i = 1, 2, · · · , N . Thus, the ANOVA table for testing H0 : β1 = β2 = β3 = 0 is:

Source of variation Sum squares (SS) df Mean squares (MS) F

Regression 93.304 3 31.101 30.515
Error 16.308 16 1.019

Total 109.612 19
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The critical value is F0.05(3, 16) = 3.2389 which is smaller than the calculated value F =
30.515. As a result, at least one of the three parameters is significantly different from zero
at α = 0.05. That means, at least one of the independent variables is significantly associated
with the haemoglobin level of women at α = 0.05.

10.3.2 Testing the Significance each Parameter

In a regression analysis, once the null hypothesis H0 : β1 = β2 = · · · = βk = 0 (all the
k variables are not significant) is rejected, the next task is to identify which parameter(s)
{variable(s)} is (are) significant which is (are) not. For this purpose, an individual t test is
performed for each βj ; j = 1, 2, · · · , k.

Step 1: State both the null and alternative hypotheses. The three possible options are:

Option 1: H0 : βj = 0 vs H1 : βj 6= 0

Option 2: H0 : βj = 0 vs H1 : βj < 0

Option 3: H0 : βj = 0 vs H1 : βj > 0

Step 2: Specify the level of significance α and obtain the critical value. The critical value
for a two sided test is tα/2[n− (k + 1)] whereas the critical value for a one sided test is
tα[n− (k + 1)].

Step 3: Use the t test statistic and obtain its calculated value:

t =
β̂j − βj
ŜE(β̂j)

∼ t[n− (k + 1)].

Step 4: Decision: If |tcal| > tα[n− (k + 1)], H0 : βj = 0 should be rejected.

Step 5: Conclusion.

The (1 − α)100% confidence interval for βj ; j = 1, 2, · · · , k is given by: {β̂j ± tα/2[n − (k +

1)] ŜE(β̂j)}.

Example 10.15. Test the significance of each parameter considered in example 10.13.

Solution: The critical value for testing the significance of each parameter is t0.025(16) = 2.120.

Variable Estimate Standard Error t Statistic 95% CI

Constant 5.215 1.572 3.318* (1.8824, 8.5476)*
PCV 0.097 0.035 2.815* (0.0228, 0.1712)*
Age 0.111 0.030 3.661* (0.0474, 0.1746)*
Menopause -0.024 0.954 -0.025 (-2.0465, 1.9985)

Therefore, of the three independent variables, menopause is not significantly associated with
the haemoglobin level of women, in the presence of PCV and age in the model, at 5% signif-
icance level.
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Remark: The mean and standard deviation of haemoglobin level for pre-menopausal women
are 12.29 and 1.57 g/dl, whereas those for post-menopausal women are 16.36 and 0.63 re-
spectively. Now the null hypothesis H0 : µpre = µpost can be tested using a two independent
samples t test (as described in Chapter ?). The value of the test statistic becomes t = 7.3
which has to be compared with the critical value t0.025(18) = 2.101. Obviously, the test is
significant at α = 0.05 in contradiction with the regression analysis results. Why?

Women who have experienced the menopause clearly will be older than women who have not.
Therefore, because of the confounding effect of age with menopause, menopause becomes in-
significant in the presence of age. The next task is to remove menopause from the model and
then refit the model with PCV and Age only. Note also that if the model is fitted excluding
the age variable, menopause will be significant.

Such cross-sectional data are not good to examine whether there is a difference in the
haemoglobin level of post-menopausal and pre-menopausal women. Best would be a longitu-
dinal study which measured haemoglobin levels in women before and after their menopause
(paired sample).

10.3.3 Coefficient of Multiple Determination

Recall the coefficient of determination is defined in a general formula as:

R2 =
SSR

SST
= 1− SSE

SST
= 1− s2

s2
y

.

This measure for a multiple linear regression is called coefficient of multiple determination
and shows the proportion of the total variation in the responses explained by the set of in-
dependent variables. This R2 does not take into account the loss of degrees of freedom from
the inclusion of additional explanatory variables in the model.

The coefficient of multiple determination adjusted for the degrees of freedom is called adjusted
coefficient of multiple determination(R2

adj) and the formula is a little bit modified as:

R2
adj = 1− (1−R2)

[
n− 1

n− (k + 1)

]
.

Example 10.16. In the analysis of the data in example 10.13, menopause was not found
significant in the presence of the other two variables, PCV and age. Consequently, menopause
is excluded from the model. That is, the final model is fitted consisting only PCV and age,
and the parameter estimates are presented in the following table. The SSR of this final model
is 93.304 and the SST is 109.612.

Variable Parameter Estimate Standard Error

Constant 5.239 1.206
PCV 0.097 0.033
Age 0.110 0.016

Write out the estimated model. Test the overall significance of the model and construct the
ANOVA table. Then, test for the significance of each individual parameter. Find out the
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coefficient of multiple determination and the adjusted one.

Solution: The coefficient of multiple determination of the model is R2 = 93.304
109.612 = 0.851.

The adjusted coefficient of multiple determination is R2
adj = 1 − (1 − 0.851)

(
19
17

)
= 0.8335.

Therefore, about 83.35% of the variation in the haemoglobin levels among anemic women is
explained by both the PCV and age. For this particular example, there is no even a small
change in the SSR (consequently R2) by adding menopause in the regression model.

10.3.4 Including Multinomial Predictors

It would not be appropriate to include a categorical explanatory variable with more than two
categories in a regression model as if it were quantitative or binary. This is because the codes
used to represent the various categories are merely identifiers and have no numeric signifi-
cance. In such case, a set of binary variables, called design (dummy, indicator) variables,
should be created to represent such a polytomuous variable.

Suppose, for example, that one of the explanatory variable is marital status with three cat-
egories: ”Single”, ”Married”, ”Separated”. In this case, taking one of the categories as a
reference (comparison group), two design variables (d1 and d2) are required to represent mar-
ital status in a regression model. For example, if the category ”Single” is taken as a reference,
the two design variables, d1 and d2 are set to 0; when the subject is ”Married”, d1 is set to 1
while d2 is still 0; when the marital status of the subject is ”Separated”, d1 = 0 and d2 = 1
are used. The following table shows this example of design variables for marital status:

Design Variables
Marital Status Married (d1) Separated (d2)

Single 0 0
Married 1 0
Separated 0 1

In general, if a polytomuous variable X has m categories, then m − 1 design variables are
needed. The m − 1 design variables are denoted as du and the coefficients of those design
variables are denoted as βu, u = 1, 2, · · · ,m − 1. Thus, for a simple linear regression on a
multinomial independent variable would be:

yi = α+ β1di1 + β2di2 + · · ·+ βm−1di,m−1.

Example 10.17. A short survey was conducted on a random sample of 23 patients to know
the percentage level of their satisfaction by the medical treatment they were given. The
patients were asked about three additional variables: their age, gender and education level.
The recorded data are presented as follows where y= patient satisfaction in percentage, x1=
age in years, x2= gender (0=male, 1=female) and x3= education level (1= uneducated,
2=primary, 3=secondary, 4=tertiary).
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No yi xi1 xi2 xi3
Indicator variables for education level (xi3)

Uneducated (di31) Primary (di32) Secondary (di33)

1 26.1 52 0 1 1 0 0
2 36.5 49 0 1 1 0 0
3 46.1 42 0 1 1 0 0
4 47.2 38 0 1 1 0 0
5 49.0 55 0 1 1 0 0
6 51.0 34 0 1 1 0 0
7 52.5 44 0 2 0 1 0
8 66.4 36 0 2 0 1 0
9 48.0 50 0 2 0 1 0
10 54.6 45 0 2 0 1 0
11 66.7 40 1 2 0 1 0
12 57.9 36 0 3 0 0 1
13 57.0 53 1 3 0 0 1
14 60.5 43 1 3 0 0 1
15 89.4 28 1 3 0 0 1
16 89.1 29 1 3 0 0 1
17 60.3 33 1 4 0 0 0
18 67.5 43 0 4 0 0 0
19 70.7 41 0 4 0 0 0
20 77.7 29 1 4 0 0 0
21 77.0 29 1 4 0 0 0
22 79.2 33 1 4 0 0 0
23 88.6 29 1 4 0 0 0

The parameter estimates and their estimated standard errors of the linear regression of patient
satisfaction on age, gender and education level are presented in the following table.

Variable Parameter Estimate Standard Error

Constant 103.043 10.796
Age (x1) -0.956 0.258
Female (x2) 5.246 4.909
Uneducated (d31) -17.383 5.912
Primary (d32) -5.354 5.572
Secondary (d33) -0.331 4.919
Tertiary Ref.

In addition, the SST and SSE of the model are 6194.496 and 1126.660, respectively.

1. Write out the estimated linear regression.

2. Construct the ANOVA table and test the overall significance of the model.

3. Determine the coefficient of multiple determination and adjusted coefficient of multiple
determination, and interpret.

4. Examine the significance of each individual independent variable.

5. Interpret the (partial) slope of each independent variable.
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Solution: The population regression model is of the form yi = α+ β1xi1 + β2xi2 + β31di31 +
β32di32 + β33di33 + εi; i = 1, 2, · · · , N where yi is the satisfaction level of the ith patient.

1. The estimated model is ŷi = 103.043 − 0.956xi1 + 5.246xi2 − 17.383di31 − 5.354di32 −
0.331di33; i = 1, 2, · · · , 23

2. For testing the overall significance of the model, the null hypothesis to be tested is
H0 : β1 = β2 = β31 = β32 = β33 = 0. The ANOVA table is:

Source of variation SS df MS F

Regression SSR=5067.836 5 MSR=1013.567 F = 15.294
Error SSE=1126.660 17 MSE= 66.274

Total SST=6194.496 22

The critical value is F0.05(5, 17) = 2.8100. Since Fcal = 15.294 > F0.05(5, 17), it indicates
at least one of the three independent variables is significantly associated with patient
satisfaction at 5% level of significance.

3. The coefficient of multiple determination is R2 = 5067.836
6194.496 = 0.8181 and the adjusted

coefficient of multiple determination is R2
adj = 1 − (1 − 0.8597)

(
22
17

)
= 0.7646. About

76.46% of the variation in the patients satisfaction is explained by the three variables
jointly (age, gender and education level)

4. For identifying the significant and insignificant parameters of the model, the t test
statistics is used as usual. At α = 0.05, the critical value for each individual parameter
is t0.025(17) = 2.110.

Variable Estimate Standard Error t Statistic 95% CI

Constant 103.043 10.796 9.545* (80.2634, 125.8226)*
Age (x1) -0.956 0.258 -3.707* (-1.5004 -0.4116)*
Female (x2) 5.246 4.909 1.069 (-5.1120, 15.6040)
Uneducated (d31) -17.383 5.912 -2.940* (-29.8573, -4.9087)*
Primary (d32) -5.354 5.572 -0.961 (-17.1109, 6.4029)
Secondary (d33) -0.331 4.919 -0.067 (-10.7101, 10.0481)
Tertiary Ref.

Hence, age is significant but gender is not, at α = 0.05. Also, since one of the three
design (dummy) variables of education level is significant, education level is a significant
factor of patient satisfaction at α = 0.05.

5. Controlling for all other variables included in the model:

• As the age of a patient increases by 1 year, his/her mean satisfaction level decreases
by 0.956%.

• For the given sample, the mean satisfaction level of female patients (relative to
male patients) increases by 5.246%. But, this difference is not significant for the
population in general at α = 5%.
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• The interpretation of each design variable of education level is made relative to
the tertiary education which is the reference category. The mean level of satisfac-
tion between uneducated patients and tertiary educated patients is significantly
different, but the other two design variables representing primary vs tertiary and
secondary vs tertiary are not significant at α = 5%. Therefore, it can be concluded
the mean level of satisfaction of uneducated patients decreases by 17.383% relative
to educated (primary, secondary or tertiary) patients.
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Chapter 11

Logistic Regression

11.1 Binary Logistic Regression

A binary logistic regression predicts the probability of success in a dichotomous dependent
variable, for example, whether a person will develop a disease or whether a certain patient
will survive a surgical procedure. There could be one or more independent variables which
can be, as usual, either continuous, categorical or both.

11.1.1 The Logistic Function

Recall the logistic function is

f(z) =
1

1 + exp(−z)
; −∞ < z <∞.

When z = −∞, f(−∞) = 0 and when z =∞, f(∞) = 1. Note also that f(0) = 1
2 .

Figure 11.1: Plot of the Logistic Function

Thus, as the figure describes the range of f(z) is between 0 and 1 (that is, 0 ≤ f(z) ≤ 1)
regardless of the value of z. Therefore, it is suitable for use as a probability model. Hence,
to indicate that f(z) is a probability value, the notation π(z) can be used instead. That is,

π(z) =
1

1 + exp(−z)
; −∞ < z <∞

where π(z) = P (Y = 1|Z = z).
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11.1.2 The Simple Logistic Regression

To begin with the simplest model, consider the case of a binary outcome and a single predictor
variable x. Hence, in the logistic function, z is expressed as a function (mostly linear function)
of the explanatory variable. That is, zi = g(xi) = α + βxi. As a result, the simple logistic
probability model is:

π(xi) =
1

1 + exp[−(α+ βxi)]

where π(xi) = P (Yi = 1|Xi = xi) = 1− P (Yi = 0|Xi = xi). It can also be written as

π(xi) =
exp(α+ βxi)

1 + exp(α+ βxi)
.

As can be seen from this model, the relationship between the response variable (probability
of success) and the explanatory variable is not linear. However, it can be linearized by using
different transformations of the probability of success and the most common one is called a
logit or log-odds transformation.

The Logit Transformation

In the previous chapter, odds is defined as the ratio of the probability of success to the
probability of failure. Hence, the odds of successes at a particular value xi of the explanatory
variable is

Ω(xi) =
π(xi)

1− π(xi)
.

Thus, the odds of successes for a simple logistic regression model is Ω(xi) = exp(α+ βxi). If
Ω(xi) = 1, then a success is as likely as a failure at the particular value xi of the explanatory
variable. If Ω(xi) > 1, then log Ω(xi) > 0, a success is more likely to occur than a failure. On
the other hand, if Ω(xi) < 1, then log Ω(xi) < 0, a success is less likely than a failure.

The logit of the probability of success is given by the natural logarithm of the odds of successes.
Therefore, the logit of the probability of success is a linear function of the explanatory variable.
Thus, the simple logistic model is

logit π(xi) = log

[
π(xi)

1− π(xi)

]
= α+ βxi

This is particulary called the logit model as it uses the logit transformation or the log-odds
scaling (or logit link function) which is a reasonable choice for binary response models.

To clarify the relationship between probabilities, odds, and the natural log of the odds (logit),
the following table includes probability values along with their corresponding odds as well as
the natural log of the odds, log(odds). The table demonstrates that as the probability gets
smaller and approaches 0, the odds also approach 0 while the log odds approach −∞(negative
infinity), and as the probability gets larger and approaches 1, the odds also get larger while
the log odds approach +∞(positive infinity). Therefore, while probabilities can theoretically
vary from 0 to 1 with a midpoint of 0.5, the corresponding odds can theoretically vary from
0 to +∞ with 1 corresponding to the probability midpoint, and the natural log of the odds
can theoretically vary from +∞ to +∞ with 0 corresponding to the probability midpoint.
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π(xi) 1− π(xi) Ω(xi) logit π(xi)

0.001 0.999 0.001 -6.908
0.010 0.990 0.010 -4.605
0.100 0.900 0.111 -2.198
0.200 0.800 0.250 -1.386
0.300 0.700 0.429 -0.846
0.400 0.600 0.667 -0.405
0.500 0.500 1.000 0.000
0.600 0.400 1.500 0.405
0.700 0.300 2.333 0.847
0.800 0.200 4.000 1.386
0.900 0.100 9.000 2.197
0.990 0.010 99.000 4.595
0.999 0.001 999.000 6.907

Thus, the range of the log(odds) more closely resembles the standard normal distribution in
that it is unbounded, has a midpoint of 0, and is symmetric around the midpoint.

There are also other models that are used in practice. The probit model or the complementary
log-log model might be appropriate when the logit model does not fit the data well.

Interpretation of the Parameters

The parameters, α and β, are the intercept and slope of the logit model, respectively. Be-
cause the predicted value, probability, in logistic regression is different from the predicted
value, mean, in linear regression, the interpretations of the intercept, α, and slope, β, are also
somewhat different as these must be interpreted in the context of the predicted response.

The logit model is monotone depending on the sign of the parameter β. Its sign determines
whether the probability of success is increasing or decreasing, as shown in figure 11.2, when
the value of the explanatory variable increases. When the parameter β is zero, Y is inde-
pendent of X. Then, π(xi) = exp(α)

1+exp(α) which is identical for all xi, so the curve becomes a

straight (horizontal) line.

The slope parameter of a logit model can be interpreted in terms of an odds ratio. From
logit π(xi) = α + βxi, an odds is an exponential function of xi. This provides a basic
interpretation for the magnitude of the slope parameter β. The odds at xi is Ω(xi) = exp(α+
βxi) and the odds at xi + 1 is Ω(xi + 1) = exp[α+ β(xi + 1)]. Thus, the odds ratio is

θ =
Ω(xi + 1)

Ω(xi)
= exp(β).

This value is the multiplicative effect of the odds of successes due to a unit change in the
explanatory variable. That is, for every one unit increase in xi, the odds changes by a factor
of exp(β). Similarly, for an m units increase in xi, say xi + m versus xi, the corresponding
odds ratio becomes exp(mβ).
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Figure 11.2: Plot of the Logistic Probability

Also, the parameter β determines the slope (rate of change or marginal effect) of the proba-
bility of success at a certain value of the explanatory variable. This rate of change (marginal
effect) at a particular xi value is described by drawing a straight line tangent to the curve at
that point. That line will have a slope of π(xi)[1− π(xi)]β. This is the rate of change (slope
or marginal effect) of π(xi) at a particular value of xi. For example, the line tangent to the
curve at xi for which π(xi) = 0.5 has a slope (0.5)(1− 0.5)β = 0.25β. If π(xi) is 0.9 or 0.1, it
has a marginal effect 0.09β. As the probability of success approaches either 0 or 1, the rate
of increment (decrement) of the curve approaches to 0. The steepest slope of the curve is
attained at xi for which the probability of success is 50%. Thus, solving

1

1 + exp[−(α+ βxi)]
= 0.5

for xi implies xi = −α
β . This xi value is called medial effective level (EL50). At this value,

each outcome has a 50% chance of occurring.

The intercept α is, not usually of particular interest, used to obtain the odds (probability) at
xi = 0. Also, by centering the explanatory variable at 0 {that is, replacing xi by (xi− x̄)}, α
becomes the logit at that mean, and thus π(x̄) = exp(α)

1+exp(α) .

The estimated logistic regression model is written as:

logit π̂(xi) = log

[
π̂(xi)

1− π̂(xi)

]
= α̂+ β̂xi.

Example 11.1. For studying the effect of age (continuous variable) on the occurrence of
hypertension (coded as 1 for presence and 0 for absence), a sample of 13 individuals were
examined. The ages (in years) of persons having hypertension are 45, 60, 60, 60, 55, 55,
20 and those who do not have hypertension are 20, 20, 18, 30, 55, 18. For these data, the
following parameter estimates were obtained.

192

mailto:es.awol@gmail.com


Bio/Statistics- SPHM 5011 c© 2021 By: Awol S., E-mail: es.awol@gmail.com

Variable Parameter Estimate

Intercept -3.4648
Age 0.0931

1. Write the model that allows the prediction of the probability of having hypertension at
a given age.

2. What is the estimated probability of having hypertension at the minimum and maximum
ages of this study.

3. What is the estimated probability of having hypertension at the age of 35. Also find
the odds of having hypertension at this age.

4. Find the estimated probability of success at the sample mean and determine the incre-
mental change (marginal effect) at that point.

5. Write out the estimated logit model.

6. Find the estimated odds ratio of having hypertension and interpret.

7. Determine the estimated median effective level (EL50) and interpret.

Solution: Let Y= hypertension and X= age. Then π̂(xi) = P̂ (Y = 1|xi) is the estimated
probability of having hypertension, Y = 1, given the age xi of an individual i.

1. The estimated probability of hypertension at a given age is given by:

π̂(xi) =
exp(−3.4648 + 0.0931xi)

1 + exp(−3.4648 + 0.0931xi)
.

2. The estimated probability of having hypertension at the age of 35 years is π̂(35) = 0.4486
and its estimated odds is Ω̂(35) = 0.8136.

3. The mean age of the sample is 39.69 years. The estimated probability of having hyper-
tension at this mean age is π̂(39.69) = 0.5573 and the rate of change (marginal effect)
at this mean value is π̂(39.69)[1 − π̂(39.69)]β̂ = 0.5573(1 − 0.5573)(0.0931) = 0.0230.
The probability of having hypertension at the age of 39.69 years increases by 2.30%.

4. The estimated logit model is written as

log

[
π̂(xi)

1− π̂(xi)

]
= −3.4648 + 0.0931xi.

5. The estimated odds ratio is exp(β̂) = exp(0.0931) = 1.0976. Hence, the odds (risk) of
having hypertension is 1.0976 times larger for every year older an individual is. In other
words, as the age of an individual increases by one year, the odds (risk) of developing
hypertension increases by a factor of 1.0976. Or the odds (risk) of having hypertension
increases by [exp(0.0931)− 1]× 100% = 9.76% every year.

6. The estimated median effective level, the estimated age in years at which an individual
has a 50% chance of having hypertension, is ÊL50 = −α̂/β̂ = −(−3.4648)/0.0931 =
37.2159.
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11.1.3 Logit Models with Categorical Predictors

Like ordinary regression, logistic regression extends to include qualitative explanatory vari-
ables, often called factors.

Binary Predictors

For simplicity, let us consider a binary predictor, X, representing an exposure which refers to
a risk factor such as smoking (smoker, nonsmoker) or patient characteristics like sex (male,
female), residence (urban, rural). The simple logit model is

log

[
π(xi)

1− π(xi)

]
= α+ βxi where xi =

{
1, exposed group;
0, unexposed group.

From this model, the odds in the exposed group is given by Ω(1) = exp(α+ β) and the odds
in the unexposed group is Ω(0) = exp(α). This implies, exp(β) as the odds ratio associated
with an exposure (exposed xi = 1 versus unexposed xi = 0), which is equivalent to the odds
ratio in a 2× 2 table.

In other words, the estimates of the parameters of a logit model for a 2×2 table can be easily
determined from the cell frequencies. Consider the 2× 2 table below. Setting xi = 0 for the

Response
Exposure Success (1) Failure (0) Total

Exposed (1) n11 n10 n1+

Unexposed (0) n01 n00 n0+

Total n+1 n+0 n

unexposed group and then solving for α gives the estimated intercept of the logit model in
terms of the natural logarithm of the odds of successes in the unexposed group. That is,

α̂ = log

[
π̂(0)

1− π̂(0)

]
= log

(
n01

n00

)
.

Similarly, the estimate of the slope of the logit model is derived as the natural logarithm of
the odds ratio associated with an exposure by setting xi = 1 for the exposed group,

β̂ = log

[
π̂(1)

1− π̂(1)

]
− α̂ = log

[
π̂(1)

1− π̂(1)

]
−
[

π̂(0)

1− π̂(0)

]
= log

(
n11n00

n10n01

)
.

As discussed before, the marginal effect of a continuous explanatory variable, which is very
useful when interpreting a binary logit model, is the partial derivative of the probability of
success with respect to that variable.

Similarly, the discrete change of a binary explanatory variable is the difference in estimated
probabilities when the variable value is 1 and when it is 0. Note that marginal effects and
discrete changes look similar but are not equal in conceptual and numerical senses.
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Example 11.2. In a study of cigarette smoking and risk of lung cancer, a logistic regression
analysis is used to determine how much greater the odds are finding cases of the diseases
among subjects who have ever smoked than among those who have never smoked.

Lung Cancer
Smoking Case (1) Control (0) Total

Yes (1) 77 123 200
No (0) 54 171 225

Total 131 294 425

Given the parameter estimates from a statistical software as follows:

Variable Parameter Estimate

Intercept -1.1527
Smoking 0.6843

Write out the estimated model and interpret the slope estimate. Also find the discrete change.

Solution: Let Y= lung cancer where

yi =

{
1, if the subject develops lung cancer - Case;
0, otherwise (if the subject does not develop lung cancer) - Control.

For the explanatory variable, let X= smoking status where

xi =

{
1, if the subject had ever smoked - Smoker;
0, otherwise (if the subject had never smoked) - Nonsmoker.

Thus, π̂(xi) is the estimated probability of developing lung cancer, Y = 1, given the smoking
status, xi = 1 for smokers and xi = 0 for non-smokers. The parameter estimates can also be
obtained manually. The estimates are

α̂ = log

(
n01

n00

)
= log

(
54

171

)
= −1.1527

and

β̂ = log

(
n11n00

n10n01

)
= log

[
77(171)

123(54)

]
= 0.6843.

Thus, the estimated model is

log

[
π̂(xi)

1− π̂(xi)

]
= −1.1527 + 0.6843xi.

The estimated odds ratio is exp(0.6843) = 1.9824. Thus, smokers are 1.9824 times (98.24%)
more likely to develop lung cancer as compared to nonsmokers. Or the odds (risk) of de-
veloping lung cancer is 98.24% higher for smokers than for nonsmokers {the odds (risk) of
developing lung cancer among smokers is 98.24% higher than that of among nonsmokers}.

The discrete change is π̂(1)− π̂(0) = 0.3850− 0.2400 = 0.1450. The probability of developing
lung cancer increases by 14.50% for smokers relative to nonsmokers.
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Example 11.3. The following table presents the cross-classification of 1464 HIV/AIDS pa-
tients involved in ? study by defaulting (Yes, No) and gender (Female, Male).

Defaulter
Gender Yes (1) No (0) Total

Female (1) 189 741 930
Male (0) 142 392 534

Total 331 1133 1464

The parameter estimates are provided in the following table:

Variable Parameter Estimate

Intercept -1.0154
Smoking -0.3508

Write out the estimated model and interpret the estimated slope.

Solution: Let Y= defaulter where yi = 1 if the patient was defaulted from the HAART
treatment and yi = 0 otherwise (if the patient was active on the treatment). Let X= gender
of the patient where xi = 1 if the patient is female and xi = 0 otherwise (if the patient is male).

Then π̂(xi) is the estimated probability of the patient being defaulted from the HAART
treatment. The estimated model is

log

[
π̂(xi)

1− π̂(xi)

]
= −1.0154− 0.3508xi.

The odds ratio is exp(−0.3508) = 0.7041. This means that female patients are 0.7041 times
(29.59%) less likely to default from HAART treatment as compared to male patients. Or, the
risk of being defaulted is 29.59% lower for female patients than for male patients (the risk of
being defaulted for male patients is 42.02% higher than the risk of being defaulted for female
patients).

Polytomous Explanatory Variables

When there is a binary response variable and a polytomous explanatory variable, the data
can be presented using a 2×m table. Taking one of the category of the explanatory variable
as a reference, m−1 stratified 2×2 tables can be constructed. Then the parameter estimates
corresponding to each design variable can be easily determined from each table. If category

m is taken as a reference, then α̂ = log
(
nm1
nm0

)
and β̂u = log

(
nu1nm0
nu0nm1

)
; u = 1, 2, · · · ,m− 1.

Example 11.4. Given the following cross-classified data on race and coronary heart disease
for 100 subjects.

Race
CHD White Black Hispanic Other Total

Present (1) 5 20 15 10 50
Absent (0) 20 10 10 10 50

Total 25 30 25 20 100

Software provides the following parameter estimates.
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Variable Parameter Estimate

Intercept -1.386
Black (d1) 2.079
Hispanic (d2) 1.792
Other (d3) 1.386

Specify the design variables for race using ”white” as a reference group. Calculate the pa-
rameter estimates manually from the cell counts of the contingency table and compare them
with the software estimates. Write out the estimated model and interpret.

Solution: Since the variable ”Race” has four categories, three design variables are needed.

Design Variables
Race Black (d1) Hispanic (d2) Other (d3)

White 0 0 0
Black 1 0 0
Hispanic 0 1 0
Other 0 0 1

Let π̂(xi) be the estimated probability of developing coronary heart disease given the race of
an individual. Thus,

log

[
π̂(xi)

1− π̂(xi)

]
= −1.386 + 2.079di1 + 1.792di2 + 1.386di3.

Blacks are about 8 {exp(2.079) = 7.996} times more likely to develop coronary heart disease
as compared to whites. Similarly, the odds (risk) of coronary heart disease for hispanics is
about 6 {exp(1.792) = 6.001} times that of whites. The odds (risk) of coronary heart disease
for other (neither blacks nor hispanics) races is about 4 {exp(1.386) = 3.999} times that of
whites.

11.1.4 Multiple Logistic Regression

Suppose there are k explanatory variables (categorical, continuous or both) to be considered
simultaneously. Then, the multiple logit model is written as:

logit π(xi) = log

[
π(xi)

1− π(xi)

]
= β0 + β1xi1 + β2xi2 + · · ·+ βkxik.

Similar to the simple logistic regression, exp(βj) represents the (partial) odds ratio associated
with an exposure if Xj is binary (exposed xij = 1 versus unexposed xij = 0); or it is the odds
ratio due to a unit increase if Xj is continuous (xij = xij + 1 versus xij = xij).

If the jth explanatory variable, Xj , has mj levels, then the multiple logit model with k
variables would be

log

[
π(xi)

1− π(xi)

]
= β0 + β1xi1 + · · ·+ βj−1xi,j−1 +

mj−1∑
u=1

βjudiju + βj+1xi,j+1 + · · ·+ βkxik
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where the dju’s are the mj − 1 design variables and βju, u = 1, 2, · · · ,mj − 1 are their corre-
sponding parameters.

Note: Odd ratios obtained from a simple logistic regression (one independent variable) are
called crude odds ratios (COR) and odd ratios obtained from a multiple logistic regression
(two or more independent variables) are called adjusted odds ratios (AOR).

Example 11.5. To determine the effect of vision status (1=vision problem, 0=no vision
problem) and driver education (1=took driver education, 0=did not take driver education)
of a driver on car accident (did the subject had an accident in the past year?), the following
parameter estimates are obtained from a sample of 210 individuals. Interpret the results.

Variable Parameter Estimate

Intercept 0.1110
Vision 1.7139
Education -1.5001

Solution: Let Y= car accident (yi = 1 if a subject had an accident in the past year and
yi = 0 if a subject had not an accident in the past year). Let X1= vision problem (xi1 = 1 if
a subject had a vision problem and xi1 = 0 if a subject had not a vision problem). Let X2=
driver education (xi2 = 1 if a subject took driver education, xi2 = 0 if a subject did not take
driver education).

The estimated logit model is log
[

π̂(xi)
1−π̂(xi)

]
= 0.1110 + 1.7139xi1 − 1.5001xi2. The estimated

odds ratio associated with vision problem is exp(1.7139) = 5.551. The odds of having acci-
dent for a person with vision problem is 5.551 times that of a person with no vision problem
assuming driver education the same. In other words, drivers who have vision problem are
5.551 times more likely to have an accident as compared to those with no vision problem.

Also, the estimated odds ratio associated with education problem is exp(−1.5001) = 0.223.
Drivers who took driving education are 0.223 times less likely to have an accident as compared
to those who did not take driving education assuming the same vision status, that is, the risk
of having an accident for those who took a driving education is 77.7% lower than those who
did not take a driving education.

11.2 Inference for Logistic Regression

Recall the binary response probability given the values of the explanatory variables is

π(xi) =

exp(
k∑
j=0

βjxij)

1 + exp(
k∑
j=0

βjxij)

(11.1)

where xi0 = 1 for all i = 1, 2, · · · , n. Equivalently using the logit transformation, it can be
written as

log

[
π(xi)

1− π(xi)

]
=

k∑
j=0

βjxij . (11.2)
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11.2.1 Parameter Estimation

The goal of logistic regression model is to estimate the k + 1 unknown parameters of the
model. This is done with maximum likelihood estimation which entails finding the set of
parameters for which the probability of the observed data is largest.

Given a data set with n independent observations. Suppose these responses are grouped intom
unique covariate patterns (called populations). Then each binary response Yi; i = 1, 2, · · · ,m
has an independent Binomial distribution with parameter ni and π(xi), that is,

P (Yi = yi) =

(
ni
yi

)
π(xi)

yi [1− π(xi)]
ni−yi ; yi = 0, 1, 2, · · · , ni

where xi = (xi1, xi2, · · · , xik) for population i and
m∑
i=1

ni = n. Then, the joint probability

mass function of the vector of m Binomial random variables, Y t = (Y1, Y2, · · · , Ym), is the
product of the m Binomial distributions

P (y|β) =

m∏
i=1

(
ni
yi

)
π(xi)

yi [1− π(xi)]
ni−yi . (11.3)

The joint probability mass function in equation (11.3) expresses the values of y as a function
of known, fixed values for β = (β0, β1, β2, · · · , βk)t. The likelihood function has the same
form as the probability mass function, except that it expresses the values of β in terms of
known, fixed values for y. Thus,

`(β|y) =

m∏
i=1

(
ni
yi

)
π(xi)

yi [1− π(xi)]
ni−yi (11.4)

Note that the combination term does not contain any of the π(xi). As a result, it is essentially
constant that can be ignored: maximizing the equation without the combination term will
come to the same result as if it was included. Therefore, equation (11.4) can be written as:

`(β|y) =

m∏
i=1

π(xi)
yi [1− π(xi)]

ni−yi (11.5)

and it can be re-arranged as:

`(β|y) =

m∏
i=1

[
π(xi)

1− π(xi)

]yi
[1− π(xi)]

ni (11.6)

By substituting the odds of successes and probability of failure in equation (11.6), the likeli-
hood function becomes

`(β|y) =

m∏
i=1

exp

yi k∑
j=0

βjxij

1 + exp

 k∑
j=0

βjxij

−ni (11.7)
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Since the logarithm is a monotonic function, any maximum of the likelihood function will
also be a maximum of the log-likelihood function and vice versa. Thus, taking the natural
logarithm of equation (11.7) gives the log-likelihood function:

L(β|y) =

m∑
i=1

yi
k∑
j=0

βjxij − ni log

1 + exp

 k∑
j=0

βjxij

 (11.8)

To find the critical points of the log-likelihood function, first, equation (11.8) should be
partially differentiated with respect to each βj ; j = 0, 1, · · · , k which results in a system of
k + 1 nonlinear equations with the k + 1 unknown parameters as shown in equation (11.9)
below:

∂L(β|y)

∂βj
=

m∑
i=1

[yixij − niπ(xi)xij ] =
m∑
i=1

[yi − niπ(xi)]xij ; j = 0, 1, 2, · · · , k. (11.9)

The maximum likelihood estimates for β can be, then, found by setting each of the k + 1
equation equal to zero and solving for each βj . Since the second partial derivatives of the
log-likelihood function:

∂2L(β|y)

∂βj∂βh
= −

m∑
i=1

niπ(xi)[1− π(xi)]xijxih; j, h = 0, 1, 2, · · · , k (11.10)

is negative semidefinite, the log-likelihood is a concave function of the parameter β. In addi-
tion, equation (11.10) represents the variance-covariance matrix of the parameter estimates
which is a function of var(Yi) = niπ(xi)[1− π(xi)].

These equations do not have a closed form solution. Several optimization techniques are
available for finding the maximizing estimates of the parameters. Of these, the Newton-
Raphson method is the one which is commonly used.

11.2.2 Overall Significance of the Model

Once a logistic regression model is estimated, the next task is to answer the question ”Does the
entire set of explanatory variables contribute significantly to the prediction of the response?”.
In this case, two models are to be fitted; one with all explanatory variables (full model) and
the other with no explanatory variable (null model).

Likelihood-Ratio/Deviance Test

If the model has k explanatory variables (either binary or continuous), the null hypothesis
of no contribution of all the k explanatory variables is H0 : β1 = β2 = · · · = βk = 0. Let
`0 denote the maximized value of the likelihood function of the null model which has only
one parameter, that is, the intercept. That is, `0 = `(β̂0). Also let `M denote the maximized
value of the likelihood function of the model M with all explanatory variables (having k + 1
parameters). Here, `M = `(β̂0, β̂1, β̂2, · · · , β̂k).

Then, the likelihood-ratio test statistic is G2 = −2 log(`0/`M ) = −2(log `0− log `M ) ∼ χ2(k).
Deviance is -2 times the log-likelihood value of a model. Thus, G2 = D0 −DM ∼ χ2(k).
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Rejection of the null hypothesis, has an interpretation analogous to that in multiple linear
regression using F test, indicates at least one of the k parameters is significantly different
from zero.

Example 11.6. Suppose, a study was conducted with the objective of identifying the risk
factors associated with HIV/AIDS HAART treatment defaulter patients. Of 1464 patients,
331 were defaulted and the remaining 1133 were actively following the treatment. Five vari-
ables which were considered as explanatory variables are age in years (Age), weight in kilo-
grams (Weight), Gender (0=Female, 1=Male), Functional Status (0=Working, 1=Ambula-
tory, 2=Bedridden) and number of baseline CD4 counts (CD4). The parameter estimates
and their corresponding standard errors are presented in the following table.

Variable Parameter Estimate Standard Error

Intercept -0.3120 0.4299
Age -0.0282 0.0080
Weight -0.0051 0.0071
Gender 0.5372 0.1438
Ambulatory 0.4959 0.1448
Bedridden 1.2610 0.2882
Working Ref.
CD4 -0.0007 0.0004

The log-likelihood value of the null model is -782.5257 and the log-likelihood value of the full
model is -753.2892. Test the significance of the entire five variables altogether.

Solution: The response variable takes the value yi = 1 if the patient was defaulted and
yi = 0 otherwise (if the patient was on the treatment).

The design variables for Functional Status are:

Design Variables
Functional Status Ambulatory (d41) Bedridden (d42)

Working 0 0
Ambulatory 1 0
Bedridden 0 1

Now the model can be written as

log

[
π(xi)

1− π(xi)

]
= β0 + β1 Agei + β2 Weighti + β3 Genderi

+ β41 Ambulatoryi + β42 Bedriddeni + β5 CD4i

The null hypothesis to be tested is H0 : β1 = β2 = β3 = β41 = β42 = β5 = 0. The test statistic
value is G2 = −2(log `0 − log `M ) = −2[−782.5257 − (−753.2892)] = 58.473 which is greater
than χ2

0.05(6) = 12.592. Therefore, H0 should be rejected. At least one of the parameter is
significantly different from zero.
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11.2.3 Significance Test for Parameters

Once the null hypothesis of no contribution of all the explanatory variables to the model is
rejected, there is a need to look at which of the variables are significant and which are not.
The Wald test is used to identify the statistical significance of each coefficient (βj) of the logit
model. That is, it is used to test the null hypothesis H0 : βj = 0 which states that factor
Xj does not have significant value added to the prediction of the response given that other
factors are already included in the model. The test statistic for large sample size is, therefore,

Zj =
β̂j

ŜE(β̂j)
∼ N(0, 1).

Example 11.7. Recall example 11.6. Write out the estimated model and identify the signif-
icant explanatory variables using Wald test, and interpret the results.

Solution: We have that the estimated model is:

log

[
π(xi)

1− π(xi)

]
=− 0.3120− 0.0282 Agei − 0.0051 Weighti + 0.5372 Genderi

+ 0.4959 Ambulatoryi + 1.2610 Bedriddeni − 0.0007 CD4i

The Wald test help us to identify those parameters which are responsible for rejection of the
null hypothesis of all the parameters are zero. The value of the Wald test for each parameter
which is obtained by dividing each parameter estimate by the corresponding standard error
estimate is given in the following table.

Variable Parameter Estimate Standard Error Wald Test

Intercept -0.3120 0.4299 -0.7258
Age -0.0282 0.0080 -3.5250*
Weight -0.0051 0.0071 -0.7183
Gender 0.5372 0.1438 3.7357*
Ambulatory 0.4959 0.1448 3.4247*
Bedridden 1.2610 0.2882 4.3754*
Working Ref.
CD4 -0.0007 0.0004 -1.7500

As it can be seen from this table, age, gender and functional status (since both of the design
variables are significant) are significant at 5% level of significance. When the age of the patient
increases by one year, the odds of being defaulted decreases by a factor of exp(−0.0282) =
0.9723 assuming all other variables are same. Also, males are exp(0.5372) = 1.7112 times
more likely to default than females, that is, the odds of being defaulted for males is 71.12%
higher than that of females assuming the other variables constant. Again, assuming all other
variables constant, ambulatory and bedridden patients are 1.6420 and 3.5290 times more
likely to be defaulted than working patients, respectively.

Significance of a Polytomous Predictor

The Wald test considered above is used to identify the statistical significance of a binary or
continuous explanatory variable. Whenever a multinomial explanatory variable is included
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(excluded) in (from) the model, all of its design variables should be included (excluded); to
do otherwise implies the variables are recorded. By just looking at the Wald statistics of the
design variables, the contribution of the variable could not be determined. Hence, the Wald
test can be not used to check the significance of such a variable, rather the likelihood-ratio
test should be used.

If Xj has m categories, then the null hypothesis of no contribution of this multinomial variable
is H0 : βj1 = βj2 = · · · = βj,m−1 = 0. The likelihood-ratio test statistic is G2 = −2(log `R −
log `M ) ∼ χ2(m − 1) where `R is the maximized likelihood value under H0 (excluding the
multinomial variable Xj) and `M is the maximized likelihood value of the full model.

Example 11.8. Again recall example 11.6. Test the significance of functional status.

Solution: Since functional status is a multinomial variable with m = 3 categories, wald test
cannot be used for checking its significance. The null hypothesis is H0 : β41 = β42 = 0. Here,
β41 and β42 are the parameters associated with the two design variables of functional status;
ambulatory and bedridden, respectively. Therefore, the model in example 11.6 is re-fitted
without the two design variables of marital status. When fitted, the log-likelihood value be-
comes -765.7410.

The likelihood-ratio test statistic isG2 = −2(log `R−log `M ) = −2[−765.7410−(−753.2892)] =
24.9036. Since this value is greater than χ2

0.05(2) = 5.9915, functional status has a significant
contribution to the model.

11.2.4 Confidence Intervals

Confidence Intervals for Parameters

Confidence intervals are more informative than tests. A confidence interval for βj results from
inverting a test of H0 : βj = βj0. The interval is the set of βj0’s for which the z test statistic

is not greater than zα/2. This means |β̂j − βj0| ≤ zα/2|ŜE(β̂j)|. This yields the confidence
interval [

β̂j ± zα/2ŜE(β̂j)
]

for βj ; j = 1, 2, · · · , k. As the point estimate of the odds ratio associated to Xj is exp(β̂j)
and its confidence interval is {

exp
[
β̂j ± zα/2ŜE(β̂j)

]}
.

Example 11.9. Recall example 11.6 and construct the 95% confidence interval for each pa-
rameter and the corresponding odds ratio.

Solution: The critical value z0.025 = 1.96
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Variable β̂j ŜE(β̂j) 95% CI for βj 95% CI for ORj = exp(βj)

Intercept -0.3120 0.4299
Age -0.0282 0.0080 (-0.0439, -0.0125)* (0.9570, 0.9876)*
Weight -0.0051 0.0071 (-0.0190, 0.0088) (0.9812, 1.0088)
Gender 0.5372 0.1438 ( 0.2554, 0.8190)* (1.2910, 2.2682)*
Ambulatory 0.4959 0.1448 ( 0.2121, 0.7797)* (1.2363, 2.1808)*
Bedridden 1.2610 0.2882 ( 0.6961, 1.8259)* (2.0059, 6.2084)*
Working Ref.
CD4 -0.0007 0.0004 (-0.0015, 0.0001) (0.9985, 1.0001)

Confidence Intervals for Predicted Probabilities

For summarizing the relationship, other characteristics may have greater importance such as
π(xi) at various xi values. Consider the simple logistic model, logit π̂(xi) = α̂ + β̂xi. For a
fixed xi = x0, logit π̂(x0) = α̂+ β̂x0 has a large standard error given by√

var(α̂) + x2
0 var(β̂) + 2x0 cov(α̂, β̂).

A (1− α)100% confidence interval for logit π(x0) is[
(α̂+ β̂x0)± zα/2

√
var(α̂+ β̂x0)

]
.

Substituting each end point into the inverse transformation

π(x0) =
exp{logit[π̂(x0)]}

1 + exp{logit[π̂(x0)]}

gives the corresponding interval for π(x0).

Example 11.10. Recall example 11.6, in which the estimated model is logit π̂(xi) = −3.4648+
0.0931xi. The variance-covariance matrix of the estimated parameters is:(

3.4037 −0.0744
0.0019

)
Find the 95% confidence interval for the odds ratio and for the probability of success at the
age of 39.6923 years (xi = 39.6923).

Solution: β̂ = 0.0931, v̂ar(α̂) = 3.4037, v̂ar(β̂) = 0.0019 and ĉov(α̂, β̂) = −0.0744.

The 95% confidence interval for β is[
β̂ ± zα/2

√
v̂ar(β̂)

]
=
(

0.0931± 1.96
√

0.0019
)

= (0.0077, 0.1785).

This implies, the confidence interval for the odds ratio is

[exp(0.0077, 0.1785)] = [exp(0.0077), exp(0.1785)] = (1.0077, 1.1954).
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Also, to construct the confidence interval for the proportion of having hypertension at the
age of 39.6923 years, the estimated probability of having hypertension at the age of 39.6923
years is logit π̂(39.6923) = −3.4648 + 0.0931(39.6923) = 0.2306 and its estimated variance is

v̂ar{logit [π̂(39.6923)]} = v̂ar(α̂) + 39.69232 v̂ar(β̂) + 2(39.6923) ĉov(α̂, β̂)

= 3.4037 + 39.69232(0.0019) + 2(39.6923)(−0.0744)

= 0.4909

The 95% confidence interval for logit π(39.6923) is (0.2306±1.96
√

0.4909) = (−1.1427, 1.6039).
Thus, the 95% confidence interval for the probability of hypertension at the age of 39.6923
years is [

exp(−1.1427)

1 + exp(−1.1427)
,

exp(1.6039)

1 + exp(1.6039)

]
= (0.2418, 0.8326).

This confidence interval is very wide which may be due to the small sample size, n = 13.

11.3 Model Checking

Once the variable selection process is addressed, then the selected model should be explored
for assessing whether the assumptions of the probability model are satisfied. The diagnos-
tic methods for logistic regression, like that of linear regression, mostly rely residuals which
compare observed and predicted values. Goodness-of-fit statistics are often computed as an
objective measures of the overall fit of a model. A model checked and if it is found lacking
the fit, a new model is proposed - fitted and then checked. And this process is repeated until
a satisfactory model is found.

Similar to grouping the observations by the unique covariate patterns for the purpose of esti-
mating the parameters, again here for the purpose of checking the goodness-of-fit of a model,
the n independent responses are grouped into m unique covariate patterns (populations) each

with ni; i = 1, 2, · · · ,m observations where
m∑
i=1

ni = n. Of the ni observations in each covari-

ate pattern, if n1i successes are observed, then n0i = ni − n1i of them are failures. Thus,
the raw residual is the difference between the observed number of successes n1i and expected
number of successes µ̂(xi) = niπ̂(xi) for each value of the covariate xi.

11.3.1 The Pearson Chi-squared Goodness-of-fit Statistic

The Pearson residual is the standardized difference between the observed and expected num-
ber of successes. That is,

ri =
n1i − niπ̂(xi)√
niπ̂(xi)[1− π̂(xi)]

; i = 1, 2, · · · ,m.

Thus, the Pearson chi-squared statistic is the sum of the square of standardized residuals:

X2 =
m∑
i=1

[n1i − niπ̂(xi)]
2

niπ̂(xi)[1− π̂(xi)]
∼ χ2(m− k).
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When this statistic is close to zero, it indicates a good model fit to the data. When it is large,
it is an indication of lack of fit. Often the Pearson residuals ri are used to determine exactly
where the lack of fit occurs.

Example 11.11. Recall again example 11.1. Test the adequacy of the model using the
Pearson chi-squared test.

Solution: The fitted probabilities are obtained from the fitted model. Note here the number
of populations (aggregate values of the explanatory variable) is m = 6. Thus,

ri =
n1i − niπ̂(xi)√
niπ̂(xi)[1− π̂(xi)]

; i = 1, 2, · · · , 6

Group (xi) Frequency (ni) Successes (n1i) Probability [π̂(xi)] ri r2
i

18 2 0 0.1432 -0.5782 0.3343
20 3 1 0.1676 0.7685 0.5906
30 1 0 0.3381 -0.7147 0.5108
45 1 1 0.6736 0.6961 0.4846
55 3 2 0.8397 -0.8169 0.6673
60 3 3 0.8929 0.5999 0.3599

Total 13 7 2.9475

The Pearson chi-squared test statistic becomes X2 =
6∑
i=1

r2
i = 2.9475 which is smaller than

χ2
0.05(6− 2) = χ2

0.05(4) = 9.4877, indicating that the model is a good fit to the data.

11.3.2 The Deviance Statistic

The deviance, like the Pearson chi-squared, is used to test the adequacy of the logistic model.
As shown before, the maximum likelihood estimates of the parameters of the logistic regression
are estimated iteratively by maximizing the Binomial likelihood function. Maximizing the
likelihood function is equivalent to minimizing the deviance function. The choices for β̂j ; j =
0, 1, · · · , k that minimize the deviance are the parameter values that make the observed and
fitted proportions as close together as possible in a ’likelihood sense’. The deviance is given
by:

D = 2
m∑
i=1

{
n1i log

[
n1i

niπ̂(xi)

]
+ (ni − n1i) log

[
ni − n1i

ni[1− π̂(xi)]

]}
∼ χ2(m− k)

where the fitted probabilities π̂(xi) satisfy logit π̂(xi) =
k∑
j=0

β̂jxij and xi0 = 1. The deviance

is small when the model fits the data, that is, when the observed and fitted proportions
are close together. Large values of D (small p-values) indicate that the observed and fitted
proportions are far apart, which suggests that the model is not good.

11.3.3 The Hosmer-Lemeshow Test Statistic

The Pearson chi-squared goodness-of-fit test cannot be readily applied if there are only one or a
few observations for each possible value (combination of values) of the explanatory variable(s).
Consequently, the Hosmer-Lemeshow statistic, the best goodness-of-fit test with continuous
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explanatory variables, was developed to address this problem. The idea is to aggregate similar
observations into (mostly 10 - decile) groups that have large enough samples so that a Pearson
statistic is computed on the observed and predicted counts from the groups. That is,

HL =

m∑
i=1

[n1i − niπ̂(xi)]
2

niπ̂(xi)[1− π̂(xi)]
∼ χ2(m− 2).

11.4 Multinomial Logistic Regression

Multinomial logistic regression is used to predict a nominal dependent variable given one or
more independent variables. It is an extension of binomial logistic regression to allow for a
dependent variable with more than two categories.

Let Y be a categorical response with J categories. Let P (Y = j|xi) = πj(xi) at a fixed setting

xi for explanatory variables with
J∑
j=1

πj(xi) = 1. Thus, Y has a multinomial distribution with

probabilities {π1(xi), π2(xi), · · · , πJ(xi)}.

Multinomial (also called polytomous) logit models simultaneously describe log odds for all(
J
2

)
pairs of categories. Of these, a certain choice of J − 1 are enough to determine all, the

rest are redundant. An odds for a multinomial response can be defined to be a comparison
of any pair of response categories. For example, the odds of category 1 relative to category
3 is simply the ratio π1

π3
.

Logit models for multinomial responses are developed by selecting one response category,
often the first (last) category or the most common one, as a baseline (reference) and forming
the odds of the remaining J−1 categories against this category. For example, the multinomial
logit model (also called baseline category logit model) pairing each response category with the
last category,

log

[
πj(xi)

πJ(xi)

]
= βj0 + βj1xi1 + βj2xi2 + · · ·+ βjkxik; j = 1, 2, · · · , J − 1

simultaneously describes the effects of the explanatory variables on the J − 1 logit models
(if J = 2, it simplifies to binary logistic regression model). The intercepts and effects vary
according to the response paired with the baseline. That is, each model has its own intercept
and slope. Also note that for the reference category, βJ0 = βJ1 = βJ2 = · · · = βJk = 0.

The J − 1 equations also determine parameters for logit models with other pairs of response
categories, since

log

[
π1(xi)

π2(xi)

]
= log

[
π1(xi)/πJ(xi)

π2(xi)/πJ(xi)

]
= log

[
π1(xi)

πJ(xi)

]
− log

[
π2(xi)

πJ(xi)

]
.

Example 11.12. Based on the survival outcome of HAART treatment, HIV/AIDS patients
were classified into four categories (0= Active, 1= Dead, 2= Transferred to other hospital, 3=
Lost-to-follow). To identify factors associated with these survival outcomes, a multinomial
logit model was fitted. Three explanatory variables that were considered are Age, Gender
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(0= Female, 1= Male) and Functional Status (0= Working, 1= Ambulatory, 2= Bedridden).
The parameter estimates are presented as follows (values in brackets are standard errors).

Functional Status
logit Intercept Age Gender Ambulatory Bedridden

log(π̂D/π̂A) -3.271 (0.624) -0.020 (0.018) 0.564 (0.325) 0.940 (0.333) 2.280 (0.479)
log(π̂T /π̂A) -1.882 (0.413) -0.030 (0.012) 0.635 (0.211) 0.833 (0.209) 1.584 (0.393)
log(π̂L/π̂A) -1.116 (0.343) -0.031 (0.010) 0.455 (0.178) 0.292 (0.183) 0.828 (0.395)

Write the estimated multinomial logit models and interpret. Also, find the estimated logit
model for the log odds of dead instead of transferred to other hospital.

Solution: Let Y = survival outcome, X1 = age of the patient, X2 = gender and X3= func-
tional status.

Each model is written as:

log

[
π̂j(xi)

π̂A(xi)

]
= β̂j0 + β̂j1xi1 + β̂j2xi2 + β̂j31di31 + β̂j32di32; j = D,T, L.

For example, the estimated model for the log odds of being dead instead of active is

log

[
π̂D(xi)

π̂A(xi)

]
= −3.271− 0.020xi1 + 0.564xi2 + 0.940di31 + 2.280di32.

An increase in the age of a patient by one year decreases the odds of being dead (instead
of active) by 2% (a factor of exp(−0.020) = 0.98). The odds that male patients being dead
(instead of active) is exp(0.565) = 1.759 times that of females, or the odds of being dead (in-
stead of active) is 75.9% higher for males than for females. In other words, relative to female
patients, male patients are 1.759 times (75.9%) more likely to be dead (instead of active).
Also, ambulatory patients are exp(0.941) = 2.563 times more likely to be dead (instead of
active) as compared to working patients. Similarly, bedridden patients are exp(2.280) = 9.777
times more likely to be dead (instead of active) relative to working patients. The functional
status effects indicate that the odds of being dead (instead of active) are relatively higher for
bedridden patients relative to ambulatory patients.

The estimated model for the log odds of being transferred instead of active is

log

[
π̂T (xi)

π̂A(xi)

]
= −1.882− 0.030xi1 + 0.635xi2 + 0.833di31 + 1.584di32.

An increase in the age of a patient by a year decreases the odds of being transferred to other
hospital (instead of active) by 3% (a factor of exp(−0.030) = 0.970). The odds that male
patients being transferred to other hospital (instead of active) is exp(0.635) = 1.887 times
that of females, or the odds of being transferred to other hospital (instead of active) is 88.7%
higher for males than for females. In other words, male patients are 1.887 times (88.7%) more
likely to be transferred to other hospital (instead of active) as compared to female patients.
Also, relative to working patients, ambulatory patients are exp(0.833) = 2.300 times more
likely to be transferred to other hospital (instead of active). Similarly, bedridden patients are
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exp(1.584) = 4.874 times more likely to be transferred to other hospital (instead of active) as
compared to working patients.

Also, the estimated model for the log odds of being lost-to-follow instead of active is

log

[
π̂L(xi)

π̂A(xi)

]
= −1.116− 0.031xi1 + 0.455xi2 + 0.292di31 + 0.828di32.

The odds of being lost-to-follow (instead of active) decreases by 3.1% (a factor of exp(−0.031) =
0.969) every year older an individual is. Male patients are exp(0.455) = 1.576 times (57.6%)
more likely to be lost-to-follow (instead of active) relative to female patients. As compared
to working patients, ambulatory patients are exp(0.292) = 1.339 times (33.9%) more likely
to be lost-to-follow (instead of active). Similarly, bedridden patients are exp(0.828) = 2.289
times more likely to be lost-to-follow (instead of active) as compared to working patients.

The estimated model for being dead instead of transferred to other hospital is

log

[
π̂D(xi)

π̂T (xi)

]
= log

[
π̂D(xi)

π̂A(xi)

]
− log

[
π̂T (xi)

π̂A(xi)

]
=− 3.271− 0.020xi1 + 0.564xi2 + 0.940di31 + 2.280di32

− (−1.882− 0.030xi1 + 0.635xi2 + 0.833di31 + 1.584di32)

=− 1.389 + 0.010xi1 − 0.071xi2 + 0.107di31 + 0.696di32.

Therefore, the estimated model for the log odds of dead instead of transferred to other hospital
is

log

[
π̂D(xi)

π̂T (xi)

]
= −1.389 + 0.010xi1 − 0.071xi2 + 0.107di31 + 0.696di32.

11.5 Ordinal Logistic Regression

Many categorical response variables have a natural ordering to their categories or called lev-
els. For example, a response variable (like amount of agreement) may be measured using a
Likert scale with categories ’strongly disagree’, ’disagree’, ’neutral’, ’agree’ or ’strongly agree’.
Ordinal logistic regression is used to predict such an ordinal dependent variable given one or
more independent variables.

Let Y is an ordinal response with J categories. Then there are J−1 ways to dichotomize these
outcomes. These are Yi ≤ 1 (Yi = 1) versus Yi > 1, Yi ≤ 2 versus Yi > 2, · · · , Yi ≤ J−1 versus
Yi > J − 1 (Yi = J). With this categorization of Yi, P (Yi ≤ j) is the cumulative probability
that Yi falls at or below category j. That is, for outcome j, the cumulative probability is

P (Yi ≤ j|xi) = π1(xi) + π2(xi) + · · ·+ πj(xi); j = 1, 2, · · · , J

where P (Yi ≤ j|xi) = 1. Each cumulative logit model uses all the J response levels. A model
for logit [P (Y ≤ j|xi)] alone is the usual logit model for a binary response in which categories
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from 1 to j form one outcome and categories from j + 1 to J form the second. That is,

logit P (Yi ≤ j) = log

[
P (Yi ≤ j)

1− P (Yi ≤ j)

]
= log

[
P (Yi ≤ j)
P (Yi > j)

]
= log

[
π1(xi) + π2(xi) + · · ·+ πj(xi)

πj+1(xi) + πj+2(xi) + · · ·+ πJ(xi)

]
; j = 1, 2, · · · , J − 1.

Formally, a model that simultaneously uses all cumulative logits assuming linear relationship
with the explanatory variables is

logit P (Yi ≤ j|xi) = βj0 + β1xi1 + β2xi2 + · · ·+ βkxik; j = 1, 2, · · · , J − 1.

Each cumulative logit has its own intercept which usually are not of interest except for com-
puting response probabilities. Since logit [P (Yi ≤ j|xi)] increases in j for a fixed xi and the
logit is an increasing function of this probability, each intercept increases in j.

But, the model assumes the same slope (its associated odds ratio called cumulative odds ra-
tio) regardless of the category j. This is called proportional odds assumption which means
the distance between each category is equivalent (proportional odds). That is, each model
has the same effect associated with each explanatory variable (the effects of the explanatory
variables are the same regardless of which cumulative probabilities are used).

The slope parameters can be interpreted in the same way as a binary logistic regression
parameters - except in this case, there are three transitions estimated instead of one tran-
sition - as there would be with a dichotomous dependent variable. A positive parameter
indicates an increased chance that a subject with a higher score on the independent variable
will be observed in a higher category. A negative parameter indicates that the chances that
a subject with a higher score on the independent variable will be observed in a lower category.

The intercepts can be used to calculate predicted probabilities for a person with a given set
of characteristics of being in a particular category.

Example 11.13. To determine the effect of Age and Gender (0= Female, 1=Male) on the
Clinical Stage of HIV/AIDS patients (1= Stage I, 2= Stage II, 3= Stage III and 4= Stage IV),
the following parameter estimates of ordinal logistic regression are obtained. The loglikelihood
values of the null and the full models are -1854.3173 and -1852.1351, respectively.

Variable Parameter Estimate Standard Error

Intercept 1 -0.9905 0.1884
Intercept 2 0.5383 0.1870
Intercept 3 2.7246 0.2066
Age 0.0034 0.0055
Gender 0.1789 0.1028

Obtain the cumulative logit model and interpret.
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Solution: Let Y= Clinical Stage of patients (1= Stage I, 2= Stage II, 3= Stage III and 4=
Stage IV), X1= Age and X2= Gender (0= Female, 1=Male).

Hence, the model has the form logit P̂ (Yi ≤ j|xi) = β̂j0 + β̂1xi1 + β̂2xi2; j = 1, 2, 3. With
J = 4 categories, the model has three cumulative logits. These are:

logit P̂ (Yi ≤ 1|xi) = −0.9905 + 0.0034xi1 + 0.1789xi2

logit P̂ (Yi ≤ 2|xi) = 0.5383 + 0.0034xi1 + 0.1789xi2

logit P̂ (Yi ≤ 3|xi) = 2.7246 + 0.0034xi1 + 0.1789xi2.

The cumulative estimate β̂1 = 0.0034 suggests an increase in the age of the patient leads to
be in higher clinical stages given the gender. Being in smaller ages reduces the likelihood of
being in a higher clinical stage category. Also, the estimate β̂2 = 0.1789 males are more likely
to be in higher clinical stages as compared to females given the age of the patient. That is,
being male increases the likelihood of being in a higher clinical stage category.
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Chapter 12

Count Regression Model

Count regressions such as poisson and negative-binomial models are used for modelling count
(discrete) response variables: for example, the number of hospital admissions or the number
of accidents over some period of time. The unit of analysis may be a person (e.g., number of
infections per patient per year), an institution (e.g., number of admissions per hospital per
month) or a place (e.g., number of car accidents per city per day). As a first pass, such a
dependent variable could be analyzed as a continuous outcome. However, unlike a continuous
variable, with counts there cannot be negative numbers. Also, the distribution of counts often
tend to be skewed to the right and does not fit a normal distribution.

Count regression models are also used to model incidence rate or incidence of rare diseases.
Incidence rate measures the rate at which a group of people develops a disease or condition.
Often it is of interest to compare incidence rates. For example, is the incidence of diabetes
higher in one city than another or is higher among men than women. As is true of counts,
incidence rates cannot be negative. As a result, in situations such as these, analyzing the
data with a technique such as linear regression is not appropriate.

12.1 The Exponential Function

Count regression models are modeled based on the exponential function. For any real number
z, the exponential function is f(z) = exp(z). This function is nonnegative for all values of z.
That is, if z = −∞, then f(−∞) = 0, if z = 0, then f(0) = 1 and if z =∞, then f(∞) =∞.

212



Bio/Statistics- SPHM 5011 c© 2021 By: Awol S., E-mail: es.awol@gmail.com

Figure 12.1: Plot of the Exponential Function

The figure also shows that the range of f is in between 0 and ∞ for every real number z.
Therefore, 0 ≤ f(z) <∞.

12.2 The Poisson Regression Model

To obtain the poisson regression model from the exponential function, z should be expressed as
a function (mostly linear function) of the explanatory variable(s). That is, zi = g(xi) = α+βxi
for a single explanatory variable X. As a result, the simple poisson regression model can be
written as f(xi) = exp(α + βxi). Here, since f(xi) represents the mean response, let us use
the notation µ(xi). That is, µ(xi) = exp(α + βxi). This model can be linearized using the
natural logarithm transformation as:

logµ(xi) = α+ βxi.

Here α and β are the intercept and slope parameters of the log-linear model. The slope
parameter is commonly interpreted in terms of an incidence rate ratio (IRR). A one unit
increase in xi has a multiplicative impact of exp(β) on the mean response, that is, the mean
of Yi at xi + 1 is the mean of Yi at xi multiplied by exp(β). If β = 0, then the multiplicative
factor is 1, the mean of Yi does not change as xi changes. If β > 0, then exp(β) > 1 and the
mean of Yi increases as xi increases. If β < 0, the mean decreases as xi increases.

Similarly, if there are k explanatory variables, the multiple poisson regression model is written
as:

logµ(xi) = β0 + β1xi1 + β2xi2 + · · ·+ βkxik =

k∑
j=0

βjxij (12.1)

where xi0 = 1 for all i = 1, 2, · · · , n. Here, µ(xi) is the conditional mean of Yi given xi where
xi = (xi1, xi2, · · · , xik).
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The sample poisson regression model is:

log µ̂(xi) = β̂0 + β̂1xi1 + β̂2xi2 + · · ·+ β̂kxik =
k∑
j=0

β̂jxij (12.2)

• µ̂(xi) is the estimated mean response.

• β̂0 is the estimated intercept of the log-linear model.

• β̂j ; j = 1, 2, · · · , k is the jth estimated (partial) slope associated with the jth independent
variable.

Example 12.1. Suppose a study is conducted in identifying factors associated with CD4
counts of 1464 HIV/AIDS patients at the start of HAART treatment. Here the response vari-
able is CD4 count of a patient and the explanatory variables were Age in years (Age), Gender
(0=Female, 1=Male) and Functional Status (0=Working, 1=Ambulatory, 2=Bedridden). The
parameter estimates and their corresponding standard errors of the poisson regression model
are given in the following table.

Variable Parameter Estimate Standard Error

Intercept 5.4625 0.0079
Age 0.0060 0.0002
Gender -0.1982 0.0041
Ambulatory -0.3783 0.0046
Bedridden -0.6296 0.0123

Obtain the estimated model and interpret the estimates.

Solution: Let Y= CD4 count, X1= Age, X2= Gender (0=Female, 1=Male) and X3= Func-
tional Status (0=Working, 1=Ambulatory, 2=Bedridden). The estimated model is:

log µ̂(xi) = 5.4625 + 0.0060xi1 − 0.1982xi2 − 0.3783di31 − 0.6296di32.

As the age of the patient increases by one year, the mean CD4 count increases by 0.60%
[exp(0.0060) − 1 = 0.60%]. The mean CD4 count of male patients decreases by 17.98% [1 −
exp(−0.1982) = 17.98%] than female patients. Similarly the mean CD4 counts of ambulatory
and bedridden patients decreases by 31.50% and 46.72% than working patients, respectively.

12.2.1 Estimation

Inference on the model and its parameters follows exactly the same approach as used for
logistic regression. Like other regression modeling, the goal of poisson regression is to esti-
mate the k + 1 unknown parameters of the model. The method of maximum likelihood is
used to estimate the parameters which follows closely the approach used for logistic regression.

Consider a random variable Y that can take on a set of count values. Given a dataset with a
sample size of n where each observation is independent. Thus, Y can be considered as a vector
of n poisson random variables. That is, each individual count response Yi; i = 1, 2, · · · , n has
an independent poisson distribution with parameter µ(xi), that is,

P (Yi = yi) =
µ(xi)

yi exp[−µ(xi)]

yi!
; yi = 0, 1, 2, · · · .
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Then, the joint probability mass function of Y t = (Y1, Y2, · · · , Yn) is the product of the n
poisson distributions. Thus, the likelihood function is:

`(β|y) =
n∏
i=1

µ(xi)
yi exp[−µ(xi)]

yi!
(12.3)

where µ(xi) = exp(
k∑
j=0

βjxij). Also, the log-likelihood function becomes:

L(β|y) =
n∑
i=1

yi log [µ(xi)]−
n∑
i=1

µ(xi)−
n∑
i=1

log (yi!). (12.4)

Then, partially differentiating the log-likelihood with respect to βj ; j = 0, 1, 2, · · · , k and
setting it equal to zero results k + 1 equations with k + 1 unknown parameters. That is,

∂L(β|y)

∂βj
=

n∑
i=1

[yi − µ(xi)]xij = 0; j = 0, 1, 2, · · · , k. (12.5)

which is usually solved with some numerical method like the Newton-Raphson algorithm.

Also, the second partial derivative of the log-likelihood function yields the variance-covarince
matrix of the estimated parameters:

∂2L(β|y)

∂βjβh
= −

n∑
i=1

µ(xi)xijxih; j = h = 0, 1, 2, · · · , k. (12.6)

12.2.2 Significance Tests

Let `M denote the maximized value of the likelihood function for the fitted model M with
all the k explanatory variables. Let `0 denote the maximized value of the likelihood function
for the fitted model with no explanatory variables (having only one parameter, that is, the
intercept). The likelihood-ratio test statistic is G2 = −2(log `0− log `M ) = D0−DM ∼ χ2(k).
Rejection of the null hypothesis implies at least one of the parameter is significantly different
from zero. Then, Wald test can be used to look at the significance of each variable (H0 : βj =
0) using a Z statistic in which

Zj =
β̂j

ŜE(β̂j)
∼ N(0, 1)

for large sample size.

Example 12.2. The log-likelihood value of the model given in example 12.1 is -85956.40 and
the corresponding null model is -92061.31. Test the overall significance of the model and also
identify the significant variables using wald test.

Solution: The model is of the form logµ(xi) = β0 + β1xi1 + β2xi2 + β31di31 + β32di32. For
testing the significance of the model, the hypothesis to be tested is H0 : β1 = β2 = β31 =
β32 = 0. Thus, the likelihood-ratio statistic is G2 = −2(log `0 − log `M ) = −2[−92061.31 −
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(−85956.40)] = 12209.82 which is very larger than χ2
0.05(4) = 1.145. Therefore, at least one

of the explanatory variable is significant.

To identify the significant explanatory variables one by one, the Wald statistics are calculated
as shown in the following table.

Variable t Statistic 95% CI for β ÎRR 95% CI for IRR

Intercept 691.46* (5.4470, 5.4780)*
Age 30.00* (0.0056, 0.0064)* 1.0060 (1.0056, 1.0064)*
Gender -48.34* (-0.2062, -0.1902)* 0.8202 (0.8137, 0.8268)*
Ambulatory -82.33* (-0.3877, -0.3697)* 0.6848 (0.6786, 0.6909)*
Bedridden -30.76* (-0.4024, -0.3542)* 0.6850 (0.6687, 0.7017)*

As can be seen, all the three explanatory variables are significantly associated with the CD4
counts of HIV/AIDS patients.

12.2.3 Model Diagnostics

Just as in any model fitting procedure, analysis of residuals is important in fitting poisson
regression. Residuals can provide guidance concerning the overall adequacy of the model,
assist in verifying assumptions, and can give an indication concerning the appropriateness of
the selected link function.

The ordinary or raw residuals are just the differences between the observations and the fit-
ted values, ei = yi − µ(xi), which have limited usefulness. The Pearson residuals are the
standardized differences

ri =
yi − µ(xi)√

µ(xi)
.

These residuals fluctuate around zero, following approximately a normal distribution when
µ(xi) is large. When the model holds, these residuals are less variable than standard normal,
however, because the numerator must use the fitted value µ̂(xi) rather than the true mean
µ(xi). Since the sample data determine the fitted value, [yi− µ̂(xi)] tends to be smaller than
[yi − µ(xi)].

Since, the standardized residual takes [yi − µ̂(xi)] and divides it by its estimated standard
error

√
µ̂(xi), it does have an approximate standard normal distribution when µ(xi) is large.

With standardized residuals, it is easier to tell when a deviation [yi − µ̂(xi)] is ”large”.

Components of the deviance are alternative measures of lack of fit. The deviance residuals
are di = ±

√
yi log [yi/µ̂(xi)]− [yi − µ̂(xi)]; i = 1, 2, · · · , n where the sign is the sign of the

ordinary residual. The deviance residuals approach zero when the observed values of the
response and the fitted values are closer to each other.

12.3 The Negative-Binomial Regression Model

For a poisson distribution, the variance and the mean are equal. Often count data vary more
than the expected. The phenomenon of the data having greater variability than expected
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is called over-dispersion. But, over-dispersion is not an issue in ordinary regression models
assuming normally distributed response, because the normal distribution has a separate pa-
rameter to describe the variability.

In the presence of over-dispersion, a negative binomial model is should be applied. Like a
poisson model, a negative binomial model expresses the log mean response in terms of the
explanatory variables. But a negative binomial model has an additional parameter called a
dispersion parameter. That is, because, the negative binomial distribution has mean E(Y ) =
µ and variance Var(Y ) = µ + ψµ2 where ψ > 0. The index ψ is a dispersion parameter. As
ψ approaches 0, V ar(Y ) goes to µ and the negative binomial distribution converges to the
poisson distribution. The farther ψ falls above 0, the greater the over-dispersion relative to
poisson variability.

Example 12.3. Consider example 12.1. The parameter estimates and their corresponding
standard errors of the negative binomial regression are given below.

Variable Parameter Estimate Standard Error

Intercept 5.4202 0.0867
Age 0.0067 0.0023
Gender -0.1841 0.0443
Ambulatory -0.3743 0.0460
Bedridden -0.6332 0.1066

ψ̂ 0.6022 [CI: (0.5628,0.6443)] 0.0208

The log-likelihood value of this model is -9083.73 and that of the null model is -9135.30. Com-
pare and contrast the parameter estimates with that of the poisson regression. In addition,
compare both models by finding their corresponding AIC values.

Solution: As the dispersion parameter ψ is significantly larger than 0, it assures that the
negative binomial regression model is more appropriate than the poisson regression model.
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Chapter 13

Survival Analysis

Survival analysis deals with the analysis of the time from a certain origin to the occurrence
of an event such as death, the appearance of a tumor, the occurrence of a certain disease,
equipment breakdown, cessation of breast feeding, and so forth. The event of interest to be
considered is not necessarily a bad event like death. It can also denote a good event such
as time-to-cure from a certain disease after some treatment, cessation of smoking, and so forth.

The problem of analyzing time to event data arises in a number of applied fields, such as
medicine/public health (e.g., time-to-relapse of a certain disease, time-to-death of HIV pa-
tients after HAART treatment, time-to-reoccurrence of a particular symptom, time-to-cure
from a certain disease), agriculture (e.g., length of time required for a cow to conceive after
calving, time until a farm experiences its first case of an exotic disease), sociology (called
duration analysis) (e.g., time-to-find a job after graduation, time until re-arrest after release
from prison), engineering (called reliability analysis) (e.g., time-to-the failure of a machine)
and other.

Although the statistical tools for time-to-event data are applicable to all these disciplines, the
focus is on applying the techniques to public health and medicine.

13.1 The Survival and Hazard Functions

Let T be a nonnegative random variable denoting the time until some specified event and
let t be a specific point in time. Survival and hazard functions are the two functions of
central interest in summarizing survival data. The survival function is the probability of an
individual surviving to time t. That is, it reports the probability of surviving beyond time
t: S(t) = P (T > t). For example, if the event of interest is death and t = 50 years, then
S(t = 50) = number of persons survived up to 50 years

total number of persons in the study is probability of surviving beyond 50 years.
Here, if S(t = 50) = 0.74, then the 50-years survival probability is 74% or 26% of the indi-
viduals will die below 50-years.

Said differently, the survival function is the probability that there is no event prior to t. The
function is equal to 1 at t = 0 (S(0) = 1) and decreases toward 0 as t goes to ∞ (S(∞) = 0).
The survival function is a monotone, decreasing function of time.
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The hazard rate (or function) is the instantaneous risk of experiencing the event of interest
in (t, t+∆t) given that the individual is still alive at t. It is the (limiting) probability that an
event occurs in a given interval, conditional upon the subject having survived to the beginning
of that interval, divided by the width of the interval:

h(t) = lim
∆t→0

P (t < T < t+ ∆t)

∆t
.

For example, if the event of interest is death and t = 50 years, then h(t = 50) is the hazard
rate at 50 years. Here, if h(t = 50) = 6.1, then, at 50-years, individuals die at rate of 6.1 per
year.
The hazard rate (or function) can vary from 0 (meaning no risk at all) to ∞ (meaning the
certainty of event at that instant) and has unit 1/t. Over time, the hazard rate can increase,
decrease, remain constant, or even take on more serpentine shapes. The human mortality
pattern related to aging generates a falling hazard for a while after birth, and then a long,
flat plateau, and thereafter constantly rising and eventually reaching, one supposes, values
near infinity at about 100 years. The risk of post-operative wound infection falls as time from
surgery increases, so the hazard function decreases with time.

Calling the probability of a bad event of interest, like death, ”hazard” might not be strange.
But, it feels strange to think of the hazard of a positive outcome, like recurring from a disease.
But technically, it is the same thing.

13.2 Survival Data Format

In survival analysis, it is realistic to record the start and end of study in calendar dates.
Individuals enter in the study at different time points. Some individuals might not experience
the event when the study ends. And other individuals might drop out or get lost in the middle
of the study. For such individuals, only a lower bound of the true survival time is known (called
right censoring).

Hence, the time-to-event variable actually records either the actual survival time for those
subjects who experience the event of interest or the minimum survival time for subjects who
do not experience the event of interest.

219

mailto:es.awol@gmail.com


Bio/Statistics- SPHM 5011 c© 2021 By: Awol S., E-mail: es.awol@gmail.com

Consider the following survival data. The Entry Date is the date when each subject was
at risk (the date when each subject was exposed) and the Exit Date is the date when each
subject experienced the event of interest or censored. Hence, each record documents a span
of time, from Entry to Exit Dates, for a subject. In the data below, the entry and exit times
are in calendar dates, and the survival analysis time for each subject is, then, the difference
in the number of days between each subject’s Entry and Exit Dates.

ID Entry Date Exit Date Time (t) Event Sex (1=Male, 2=Female) Age

1 20 Jan 2000 21 Jan 2000 1 1 1 30
2 15 Dec 1999 20 Dec 1999 5 1 2 28
3 04 Jan 2000 13 Jan 2000 9 1 2 34
4 31 Jan 2000 19 Feb 2000 20 1 2 28
5 10 Feb 2000 04 Mar 2000 22 0 1 20

The value of the instantaneous variable (Event) is the value it had at the end of the span,
that is, Exit Date. It is coded as 1 to indicate the occurrence of the event of interest and else
coded as 0 (for censoring).

The values of the enduring variables (here Sex, Age) are the values they had on the Entry
Date.

13.3 Non-Parametric Analysis

The analysis of survival data can take one of three forms - nonparametric, semiparametric,
and parametric - all depending on the form of the survival function and about how the survival
experience is affected by covariates. Nonparametric analysis follows the philosophy of making
no assumption about the functional form of the survival function. The effects of covariates
are not modeled, either - the comparison of the survival experience is done at a qualitative
level across the values of the covariates.

The most basic of analyses would be on analysing the mean time-to-event or the median time-
to-event. However, the typical preliminary data analysis tools do not translate well into the
survival analysis paradigm. Estimates of the median survival time are similarly not possible
to obtain using standard nonsurvival tools. The standard way of calculating the median is
to order the observations and to report the middle one as the median. In the presence of
censoring, that ordering is impossible to ascertain.

13.3.1 The Kaplan and Meier Estimator

The estimator of Kaplan and Meier (1958) is a nonparametric estimate of the survival function
S(t), which is the probability of survival past time t or, equivalently, the probability of
experiencing the event after t. For a dataset with observed event times, t1, t2, · · · , tk, where
k is the number of distinct event times observed in the data, the Kaplan-Meier estimate [also
known as the product limit estimate of S(t)] at any time t is given by:

Ŝ(t) =
∏
j|tj≤t

(
nj − dj
nj

)
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where nj is the number of individuals at risk at time tj and dj is the number of events at
time tj . The product is over all observed event times less than or equal to t.

Consider the following dataset of 6 subjects given in the usual format:

ID t Event

1 2 1
2 4 1
3 4 1
4 5 0
5 7 1
6 8 0

At t = 2, the earliest time in the data, all six subjects were at risk, but at that instant, only
one event occurred (ID=1). At the next time, t = 4, five subjects were at risk, but at that
instant, two events occurred. At t = 5, three subjects were left, and none occurred, but one
subject was censored. This left us with two subjects at t = 7, of which one occurred. Finally,
at t = 8, we had one subject left at risk, and this subject was censored at that time.

Now let us form a table that summarizes what happens at each time in the data (whether an
event time or a censored time):

t No. at Risk (nj) No. of Events (dj) No. of Censored (nj − dj)
2 6 1 0
4 5 2 0
5 3 0 1
7 2 1 0
8 1 0 1

Now we ask the following:

• What is the probability of survival beyond t = 2, the earliest time in the data? Because
five of the six subjects survived beyond this point, the estimate is 5

6 = 0.8333.

• What is the probability of survival beyond t = 4 given survival right up to t = 4?
Because we had five subjects at risk at t = 4, and two occurred, we estimate this
probability to be 3

5 = 0.60.

• What is the probability of survival beyond t = 5 given survival right up to t = 5?
Because three subjects were at risk, and none occurred, the probability estimate is
3
3 = 1.

• What is the probability of survival beyond t = 7 given survival right up to t = 7?
Because two subjects were at risk, and one occurred, the probability is estimated to be
1
2 = 0.50.

• What is the probability of survival beyond t = 8 given survival right up to t = 8?
Because we had only one subject at risk at t = 4, and it was censored, the probability
is 1

1 = 1.
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We can now augment a table with these component probabilities:

t No. at Risk No. of Events No. of Censored Probability

2 6 1 0 5
6

4 5 2 0 3
5

5 3 0 1 1
7 2 1 0 1

2
8 1 0 1 1

• The first probability value, 5
6 , is the probability of survival beyond t = 2.

• The second value, 3
5 , is the (conditional) probability of survival beyond t = 4 given

survival up until t = 4, which in these data is the same as survival beyond t = 4 given
survival beyond t = 2. Thus unconditionally, the probability of survival beyond t = 4
is (5

6)(3
5) = 1/2.

• The third value, 1, is the conditional probability of survival beyond t = 5 given survival
up until t = 5, which in these data is the same as survival beyond t = 5 given survival
beyond t = 4. Unconditionally, the probability of survival beyond t = 5 is thus equal
to (1

2)(1) = 1/2.

Thus the Kaplan-Meier estimate is the running product of the probability values that we have
previously calculated,

t No. at Risk No. of Events No. of Censored Probability Ŝ(t)

2 6 1 0 5
6

5
6

4 5 2 0 3
5

1
2

5 3 0 1 1 1
2

7 2 1 0 1
2

1
4

8 1 0 1 1 1
4

Because the Kaplan-Meier estimate operates only on observed event times (and not at cen-
soring times), the net effect is simply to ignore the cases where the probabilities are 1 in
calculating the product; ignoring these changes nothing.

13.3.2 The Nelson-Aalen Estimator

The cumulative hazard function (H(t)) measures the total amount of risk that has been
accumulated up to time t. The theoretical relationship between H(t) and S(t) is H(t) =
− ln{S(t)} where for S(t). There is, however, another nonparametric method for estimating
H(t) that has better small-sample properties. The estimator is from Nelson (1972) and Aalen
(1978),

Ĥ(t) =
∑
j|tj≤t

dj
nj

where nj is the number at risk at time tj , dj is the number of events at time tj , and the sum
is over all distinct failure times less than or equal to t.

Thus, given some data
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ID t Event

1 2 1
2 4 1
3 4 1
4 5 0
5 7 1
6 8 0

and we can construct the risk table

t nj dj nj − dj
2 6 1 0
4 5 2 0
5 3 0 1
7 2 1 0
8 1 0 1

We calculate the number of events per subject at each observed time,
dj
nj

, and then sum these

to obtain Ĥ(t):

t nj dj nj − dj dj
nj

Ĥ(t)

2 6 1 0 0.1667 0.1667
4 5 2 0 0.4000 0.5667
5 3 0 1 0.0000 0.5667
7 2 1 0 0.5000 1.0667
8 1 0 1 0.0000 1.0667

Ĥ(t) is the Nelson-Aalen estimator of the cumulative hazard.

13.4 Cox-PH Model

Cox Proportional Hazards (PH) model is a semi-parametric regression that models the natural
logarithm of the relative hazard of the event of interest. In a general regression model, the
hazard function h(t) depends on time t and covariates xl, x2, · · · , xk. In a simpler model,
called the Cox PH model do not depend on time, the hazard function has the following form:

h(t|xi) = h0(t) exp(β1x1 + β2x2 + · · ·+ βkxk).

The nice thing about this model is that h0(t), the baseline hazard, is given no particular
parameterizations and, in fact, can be left unestimated. The model makes no assumptions
about the shape of the hazard over time - it could be constant, increasing, decreasing, or any
other; what is assumed is that, whatever the general shape, it is the same for every subject.
One subject’s hazard is a multiplicative replica of another’s; comparing subject i to subject
j, the model states that

h(t|xi)
h(t|xj)

= exp{β1(xi1 − xj1) + β2(xi2 − xj2) + · · ·+ βp(xik − xjk)}
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which is constant, assuming the covariates xi and xj do not change over time.

The estimated model is:

ĥ(t|xi) = ĥ0(t) exp(β̂1x1 + β̂2x2 + · · ·+ β̂kxk).

The model can also be written as:

log ĥ(t|xi) = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂kxk

where ĥ(t|xi) is the estimated hazard rate at time t, β̂0 is the estimated intercept of the log
hazard model and β̂j ; j = 1, 2, · · · , k is the jth slope parameter estimate associated with the
jth covariate.

The Cox proportional hazards model yields the hazard ratio interpretation of the regression
coefficients. The quantity ĤR = exp(β̂j) is the change {equivalently, 100[exp(β̂j)− 1]% is the
percentage change} in the hazard function for each unit increase in the covariate, provided
the other covariates stay fixed.

Example 13.1. A study of the factors associated with the survival of HIV/AIDS patients
(time-to-death) under HAART treatment was conducted. The study involved 1464 patients
and the effect of baseline characteristics like age (years), gender (1=male, 0=female), weight
(kg), functional status (1=working, 2=ambulatory, 3=bedridden) and CD4 counts were ex-
amined. The parameter and hazard ratio estimated estimates together their 95% confidence
interval are presented as follows:

Variable β̂ ŜE(β̂) t-Statistic 95% CI for β ĤR 95%CI for HR

Age -0.0079 0.0188 -0.42 (-0.0447, 0.0289) 0.9921 (0.9563, 1.0293)
Male 0.6343 0.3356 1.89 (-0.0235, 1.2921) 1.8857 (0.9768, 3.6404)
Weight -0.0397 0.0182 -2.18 (-0.0754,-0.0040)* 0.9611 (0.9274, 0.9960)*
Working -1.2826 0.4821 -2.66 (-2.2275,-0.3377)* 0.2773 (0.1078, 0.7134)*
Ambulatory -0.9813 0.4728 -2.08 (-1.9080,-0.0546)* 0.3748 (0.1484, 0.9469)*
Bedridden Ref
CD4 -0.0071 0.0019 -3.74 (-0.0108,-0.0034)* 0.9929 (0.9893, 0.9966)*

Identify the significant variables and interpret.

Solution: Of the five candidate predictors of the survival of HIV/AIDS patients, only weight,
functional status and CD4 count are significant at 5% level of significance. Hence,

• A one kg increase in the weight of an HIV/AIDS patients reduces the hazard of death
by 3.89% (a factor of 0.9611) (AHR=0.9611; 95%CI: 0.9274, 0.9960) assuming all the
other variables constant.

• The hazard of death for working and ambulatory patients decreases by 72.27% (a fac-
tor of 0.2773) (AHR=0.2773; 95%CI: 0.1078, 0.7134) and 62.52% (a factor of 0.3748)
(AHR=0.3748; 95%CI: 0.1484, 0.9469), respectively, relative to bedridden patients as-
suming all the other variables constant. In other words, the hazards of death for working
and ambulatory patients are 0.2773 (AHR: 0.2773; 95%CI: 0.1078, 0.7134) and 0.3748
(AHR=0.3748; 95%: 0.1484, 0.9469) times lower than the hazard of bedridden patients
assuming all the other variables constant.
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• Holding the other variables constant, the hazard of death decreases as the CD4 count
increases (AHR=0.9929; 95%CI: 0.9893, 0.9966).

Note: In the Cox modelling, there is an assumption of proportional hazards. The assumption
is that the hazards for persons with different patterns of factors (covariates) are constant over
time. For example, if the relative hazard of heart attack among diabetics is three times higher
than among nondiabetics in the first year of the study, the relative hazard of heart attack
must also be (about) three times higher among diabetics than nondiabetics in the second year
of the study. Note that the hazard for a heart attack can be very different in the first year
than in the second year (e.g., much higher in the first year than in the second year), but the
difference between the hazards for diabetics and nondiabetics must be constant throughout
the study period.

If this assumption of proportional hazards is not fulfilled, Cox-PH Model will not be appro-
priate and other type of models like Accelerated Failure Time Models are recommended.

13.5 Accelerated Failure Time (AFT) Model

An accelerated failure-time (AFT) model, also known as accelerated-time model follows log-
time parametrization. It models the log mean-time as a function (mostly, linear) of the
independent variables. That is,

log(ti) = β0 + β1x1 + β2x2 + · · ·+ βkxk.

The parameters are interpreted in terms of time ratios (TR), that is, TRj = exp(βj). Here,
if TR = 1, then time passes at its ”normal” rate. If TR < 1, then time passes more quickly
for the subject (time is accelerated), so the event would be expected to occur sooner. And
if TR > 1, then time passes more slowly for the subject (time is decelerated), so the event
would be expected to occur later.

Example 13.2. A Weibull AFT model was fitted using the data from the example . Interpret
the results.

Variable β̂ ŜE(β̂) t-Statistic 95% CI for β T̂R 95%CI for TR

Constant 1.1779 1.8392 0.64 (-2.4269,4.7827)
Age 0.0138 0.0188 0.73 (-0.0230, 0.0506) 1.0139 (0.9773, 1.0519)
Male -1.0060 0.3356 3.00 (-1.6638,-0.3482)* 0.3657 (0.1894, 0.7060)*
Weight 0.0628 0.0182 3.45 (0.0271, 0.0985)* 1.0648 (1.0275, 1.1035)*
Working 2.0018 0.4821 4.15 (1.0569, 2.9467)* 7.4024 (2.8774, 19.0430)*
Ambulatory 1.5492 0.4728 3.28 (0.6225, 2.4759)* 4.7077 (1.8636, 11.8924)*
Bedridden
CD4 0.0112 0.0019 5.89 (0.0075, 0.0149)* 1.0113 (1.0075, 1.0150)*
ρ 0.6332 0.0852 7.43 (0.4662, 0.8002)*

Solution: Of the five candidate predictors used in the Weibull AFT model, only age is not
significant at 5% level of significance. Hence,
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• Male patients are 0.3657 (ATR=0.3657; 95%CI: 0.1894, 0.7060) times faster to die than
female patients. Or the mean time-to-death of male patients decreases by 63.43% (by
a factor of 0.3657) (ATR=0.3657; 95%CI: 0.1894, 0.7060) relative to female patients
assuming the other variables constant. The effect of being male is to accelerate time or
the effect of being female is to slow down it, or; equivalently, the effect of being male is
to hasten death, or that of being female is to delay it.

• A one kg increase in the weight of an HIV/AIDS patients increases their survival time
by 6.48% (by a factor of 1.0648) (AHR=1.0648; 95%CI: 1.0275, 1.1035) assuming all
the other variables constant.

• The mean survival time of working and ambulatory patients increases by a factor
of 7.4024 (AHR=7.4024; 95%CI: 2.8774, 19.0430) and 4.7077 (AHR=4.7077; 95%CI:
1.8636, 11.8924), respectively, relative to bedridden patients assuming all the other
variables constant.

• Holding the other variables constant, the mean time-to-death of HIV/AIDS patients
increases by 1.13% (by a factor of 1.0113) (AHR=1.0113; 95%CI: 1.0075, 1.0150) as the
CD4 count increases by one.

END OF THE COURSE!
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